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Introduzione e Risultati

Dal famoso articolo di Black and Scholes del 1973 sul prezzaggio delle opzioni,

una notevole quantità di articoli è stata scritta sull’argomento. Tuttavia, col

passare del tempo, l’ipotesi fondamentale del modello di Black-Scholes che il

sottostante segua una diffusione lognormale con una volatilità costante si è

rivelata sempre più difficile da sostenere. Di conseguenza, negli ultimi 30 anni,

tanti modelli sono stati presentati come alternativa a questo modello.

Infatti, dopo il crollo finanziario del 19 ottobre 1987, si è iniziato ad osservare

divari molto significativi tra prezzi di opzioni su vari indici azionari e prezzi

dati dal modello di Black-Scholes. In effetti, da allora, per ricavare il prezzo di

mercato di diversi opzioni call e put con il modello di Black-Scholes, occorre

utilizzare volatilità diverse per ogni prezzo di esercizio e scadenza (mentre il

modello di Black-Scholes richiedeva un’unica volatilità ricavata dalla varianza

storica del attivo sottostante). Queste volatilità vengono chiamate volatilità

implicite. Questa peculiarità suggerisce che la distribuzione percepita dagli at-

tori del mercato ed implicitamente incorporata nel prezzo delle opzioni stesse

sia asimmetrica e deformata negativamente (cioè leptocurtica con una coda

verso i valori negativi), in contrasto con la distribuzione simmetrica e legger-

mente positiva che caratterizza il modello di Black-Scholes. La figura formata
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dalla volatilità implicita come funzione del prezzo di esercizio viene chiamata

“smile” o “skew” della volatilità ed è generata dal fatto che la volatilità im-

plicita di opzioni call in-the-money è parecchio superiore a quella di opzioni

call out-of-the-money. Di solito, la pendenza dello smile decresce all’aumentare

della scadenza. La presenza dello smile è generalmente attribuita ai timori da

parte del mercato di futuri deprezzamenti significativi delle quotazioni. La

ricerca di nuovi modelli capaci di integrare l’effetto smile è stata uno dei prin-

cipali temi di ricerca della finanza quantitativa moderna.

Due ipotesi sono fondamentali nel modello di Black-Scholes per poter prezzare

derivati: i) i rendimenti del sottostante devono dipendere da un’unica fonte di

incertezza, ii) i prezzi devono seguire una traiettoria continua (un moto Brow-

niano per essere precisi). Sotto tale ipotesi, può essere costruito un portafoglio

che assicuri in ogni momento una copertura perfetta della posizione in opzioni,

determinando cos̀ı un prezzo unico per l’opzione.

Di conseguenza, tutte le estensioni del modello di Black-Scholes che tentano

di catturare l’effetto smile della volatilità si basano sul rilassamento di almeno

una delle ipotesi suddette. Rimuovendo l’ipotesi di un’unica fonte di incertezza

si arriva ai modelli di volatilità stocastica, in cui il parametro della volatilità

segue una diffusione correlata con quella del sottostante. Uno di questi modelli

è stato presentato da Heston [58]. Rimuovendo l’ipotesi di continuità della trai-

ettoria si arriva invece ai modelli con salti, nei quali il prezzo del sottostante

segue un processo di Lévy del tipo “jump-diffusion” (in cui l’evoluzione dei

prezzi segue una diffusione punteggiata di salti ad intervalli casuali) o del tipo

“pure jumps”. I modelli con i salti attribuiscono gli errori del modello Black-

Scholes ai timori di un futuro crollo delle quotazioni che non vengono presi
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in conto nel prezzaggio delle opzioni. Questi modelli considerano dunque un

crollo delle quotazioni come un evento plausibile. In effetti, se uno guarda un

grafico di una serie storica dei prezzi di un indice azionario, si accorge subito

della presenza di salti nei prezzi come il famoso gap inter giornaliero che è una

prova evidente che i prezzi non seguono una diffusione ma effettuano salti.

Questa tesi tratta lo studio dei processi di Lévy per il prezzaggio di opzioni.

I processi di Lévy sono un tema di ricerca molto studiato in finanza, e tanti

modelli sono stati presentati durante gli ultimi dieci anni. In questa tesi, de-

scriviamo i principali modelli di Lévy presentati nella letteratura scientifica.

Focalizziamo la nostra attenzione su quattro modelli particolarmente famosi,

due del tipo jump-diffusion (Merton normal jump-diffusion e Kou double-

exponential jump-diffusion) e due modelli “pure jumps” (Variance Gamma e

Normal Inverse Gaussian) dei quali esponiamo le principali proprietà matem-

atiche e tecniche per la loro simulazione.

Nel primo capitolo, riassumiamo gli strumenti matematici utili in finanza

quantitativa e più particolarmente nel prezzaggio di opzioni. Presentiamo le

caratteristiche dei processi stocastici e il loro uso per il prezzaggio di opzioni.

Nel secondo capitolo, descriviamo le debolezze del modello di Black-Scholes

e dimostriamo da un punto di vista statistico quanto l’ipotesi di rendimenti

lognormali, sottintesa da questo modello, sia errata per rappresentare i rendi-

menti di mercato. Infine, presentiamo qualche modello alternativo.

Nel terzo capitolo, introduciamo i processi di Lévy ed esponiamo le loro prin-

cipali proprietà matematiche, iniziando con il processo di Poisson, punto di

partenza della costruzione di processi con i salti.



vi

Nel quarto capitolo, presentiamo i quattro modelli di Lévy che abbiamo utiliz-

zato per prezzare opzioni: Merton normal jump-diffusion, Kou double-exponential

jump-diffusion, Variance Gamma e Normal Inverse Gaussian. Una parte im-

portante del capitolo è dedicata alla simulazione di questi processi. In una

parte finale, diamo le funzioni caratteristiche neutrali al rischio di ogni mod-

ello, dato che ne avremo bisogno nel capitolo successivo sul prezzaggio.

Il quinto capitolo tratta alcuni metodi per il prezzaggio di opzioni. I modelli

con i salti introducono nuove fonti di rischio, incluso nel prezzo di un opzione,

che non sono prezzate da nessuno strumento finanziario quotato su un mercato.

Ne risulta che la metodologia di prezzaggio utilizzata nel modello Black-Scholes

(basata sulla costruzione di un portafoglio di replicazione secondo l’ipotesi di

assenza di arbitraggio) non funziona. Tuttavia, basandosi sulla formula di

prezzaggio neutrale al rischio, visto che la funzione caratteristica di un pro-

cesso di Lévy è sempre determinabile (anche se la funzione di densità non lo è),

possiamo utilizzare metodi di prezzaggio basati sulla trasformata di Fourier.

Spieghiamo in una prima parte il metodo di prezzaggio di opzioni con la FFT,

sviluppata da Carr e Madan [24]. In una seconda parte, estendiamo il discorso

alla Trasformata di Fourier Frazionale (FRFT), algoritmo molto più veloce

della semplice FFT. Infine, diamo risultati sulla bontà dell’approssimazione

dei prezzi delle opzioni effettuata con i precedenti algoritmi.

Nel sesto e ultimo capitolo ci occupiamo della calibrazione dei parametri sui

prezzi di opzioni rilevati sul mercato. Per cominciare, selezioniamo quattro

gruppi di opzioni e mostriamo l’errore ottenuto con il modello di Black-Scholes

nell’approssimazione dei veri prezzi. In seguito, presentiamo il metodo dei min-

imi quadrati non-lineari usato per calibrare i parametri dei vari processi di Lévy
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sui prezzi di mercato. Una volta ottenuti i parametri dei modelli, calcoliamo i

nuovi prezzi che risultano essere decisamente più vicini ai prezzi di mercato di

quanto lo siano i prezzi ottenuti con il modello di Black-Scholes.

In particolare, con i diversi modelli di Lévy analizzati, risulta possibile

calibrare con alta precisione i prezzi di un gruppo di opzioni con un’unica sca-

denza. Tuttavia, risulta molto più difficile calibrare accuratamente il modello

su un intero gruppo di opzioni (su indice azionario) con diverse scadenze. An-

che se proviamo ad utilizzare diversi valori iniziali dei parametri, l’algoritmo

difficilmente riesce a raggiungere un minimo soddisfacente e in media, otteni-

amo un errore dal 0.5% al 1.5% per opzione (l’errore è ovviamente più alto per

valori estremi del prezzo di esercizio). La struttura dei processi di Lévy sembra

non essere sufficientemente flessibile per riprodurre accuratamente e comple-

tamente la struttura a termine della volatilità implicita. Un metodo molto

più efficiente potrebbe essere l’utilizzo di modelli che includono sia la volatilità

stocastica sia i salti. Lo studio di questi modelli ibridi, e in particolare dei

metodi utilizzati per il prezzaggio e la calibrazione, potrebbe rappresentare

una giusta estensione di questo lavoro.

In questa tesi, non abbiamo potuto parlare di due argomenti fondamentali

quali il prezzaggio di opzioni esotiche e l’hedging, cioè la copertura del rischio

derivante da una posizione in opzioni. Il primo di questi due è uno dei maggiori

obiettivi dei modelli di prezzaggio di opzioni, particolarmente quelli basati sui

processi di Lévy. In effetti, lo scopo della calibrazione del modello è ottenere

una stima dei parametri sottointesi nei prezzi di opzioni vanilla (quotati su

un mercato) in modo da poter prezzare prodotti esotici OTC con payoff non-



viii

vanilla (come le opzioni asiatiche o barriera). Molto spesso, il prezzaggio di

opzioni esotiche con i modelli di Lévy viene fatto tramite metodi Monte-Carlo,

anche se esistono metodi numerici finalizzati a risolvere l’equazione differen-

ziale parziale associata al modello. D’altra parte, quando si ha a che fare con

opzioni, e particolarmente opzioni esotiche, l’hedging è un tema importante

almeno quanto il prezzaggio. Vista la rischiosità degli strumenti derivati, lo

scopo di tanti modelli è giustamente quantificare e controllare questo rischio.

Di conseguenza, il prezzaggio di opzioni esotiche e l’hedging potrebbero rapp-

resentare due possibili estensioni basate sui risultati di questa tesi.

Il codice scritto per realizzare le simulazioni, il prezzaggio e la calibrazione

nei capitoli 4, 5 e 6 è una parte fondamentale di questa tesi. Il codice è

disponibile nell’appendice ma anche scaricabile dal seguente sito web:

http://ddeville.110mb.com/thesis/

Il codice è stato scritto con Matlab. La principale ragione per la quale

abbiamo scelto questo linguaggio di programmazione piuttosto che un altro

come C o C++ è la semplicità. In effetti, il codice Matlab è semplice da

scrivere ma soprattuto facile da leggere e comprendere anche da una persona

che ha solo qualche base di programmazione.



Introduction

Since Black and Scholes published their article on option pricing in 1973, there

has been an explosion of theoretical and empirical work on the subject. How-

ever, over the last thirty years, a vast number of pricing models have been

proposed as an alternative to the classic Black-Scholes approach, whose as-

sumption of lognormal stock diffusion with constant volatility is considered

always more flawed.

One major reason is that since the stock market crash of October 19, 1987, de-

viations of stock index option prices from the benchmark Black-Scholes model

have been extraordinarily pronounced. In fact, since then, to equate the Black-

Scholes formula with quoted prices of European calls and puts, it is generally

necessary to use different volatilities, so-called implied volatilities, for differ-

ent option strikes and maturities (the Black-Scholes model required a constant

volatility based on the subjacent historical volatility). That feature suggests

that the distribution perceived by market participant and incorporated into

option prices is substantially negatively skewed (that is to say leptokurtic with

a fat tail on the negative side), in contrast to the essentially symmetric and

slightly positively lognormal distribution underlying the Black-Scholes model.

The pattern formed by the implied volatilities across the strikes is then called
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volatility smile or skew, due to the fact that the implied volatility of in-the-

money call options is pretty much higher than the one of out-of-the-money

options. Typically, the steepness of the skew decreases with increasing op-

tion maturities. The existence of the skew is often attributed to fear of large

downward market movements. The research of a new form of models able to

incorporate the smile has been one of the most active fields of studies in mod-

ern quantitative finance.

There are two assumptions that have to be made in order to price derivatives

with the Black-Scholes model: returns are subject to a single source of uncer-

tainty and asset prices follow continuous sample paths (a Brownian motion).

Then, under these two assumptions, a continuously rebalanced portfolio can

be used to perfectly hedge an options position, thus determining a unique price

for the option.

Therefore, extensions of the Black-Scholes model that capture the existence of

volatility smile can, broadly speaking, be grouped in two approaches, each one

relaxing one of these two assumptions. Relaxing the assumption of a unique

source of uncertainty leads to the stochastic volatility family of models, where

the volatility parameter follows a separate diffusion, as proposed by Heston

[58]. Relaxing the assumption of continuous sample paths, leads to jump mod-

els, where stock prices follow an exponential Lévy process of jump-diffusion

type (where evolution of prices is given by a diffusion process, punctuated by

jumps at random intervals) or pure jumps type. Jump models attribute the

biases in Black-Scholes model to fears of a further stock market crash. They

would interpret the crash as a revelation that jumps can in fact occur. Looking

to a plot of a stock index time series, there is clear evidence that prices don’t
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follow a diffusion process and actually jump.

This thesis deals with the study of Lévy processes for option pricing. Lévy

processes are an active field of research in finance, and many models have been

presented during the last decade. This thesis is not an attempt to describe all

the Lévy models discussed in the literature or explain their mathematical prop-

erties. We focus on four famous models, two of jump-diffusion type (Merton

normal jump-diffusion and Kou double-exponential jump-diffusion) and two

pure jump models (Variance Gamma and Normal Inverse Gaussian) for which

we describe their foremost mathematical characteristics and we concentrate on

providing modeling tools.

In the first chapter, we present the mathematical tools useful for option

pricing. We discuss some characteristics of stochastic processes and financial

mathematics in continuous time. This chapter can be seen as a prerequisite.

In a second chapter, we discuss the limitations of the Black-Scholes model and

describe its weaknesses. We also explain from a statistical point of view how

the hypothesis of lognormal returns defined by the Black-Scholes model goes

wrong in describing market returns. Finally, we roughly present some alterna-

tive models discussed in the literature.

In a third chapter, we introduce Lévy processes and present their major math-

ematical properties, beginning from Poisson process which is the starting point

of jump processes.

In the fourth chapter, we present the four Lévy processes we selected for op-

tion pricing: Merton normal jump-diffusion, Kou double-exponential jump-

diffusion, Variance Gamma and Normal Inverse Gaussian. An important part

of the chapter is dedicated to the simulation of such processes. In the last part,
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we give the neutral characteristic function of each model, needed for option

pricing in the successive chapter.

The fifth chapter treats about option pricing methods. Jump models intro-

duce forms of risk included in option prices that are not directly priced by any

instrument currently traded in financial markets (unlike bonds for example).

The result is that the Black-Scholes arbitrage-based methodology cannot be

used. However, given the risk-neutral pricing formula and the fact that the

characteristic function is always known for a Lévy process, even if the prob-

ability density is not, Fourier-based option pricing method are possible. We

first expose the FFT option pricing method given by Carr and Madan [24],

and extend it to the Fractional Fourier Transform (FRFT), a lot faster. We

finally give some results about the goodness of the Fourier approximation of

option prices.

Finally, the sixth chapter deals with the calibration of parameters to market

option prices. We first select four sets of option market prices and show how

bad results the Black-Scholes model gives. We then present the non-linear

least-squares method used to recover the parameters of Lévy processes and

finally show the improvement in the fitting of market and model prices with

these models.

The code written to perform simulation, pricing and calibration in chapter

4, 5 and 6 is an important part of the thesis. All the code is available in the

appendix at the end of the thesis and downloadable at the following website:

http://ddeville.110mb.com/thesis/

The code is written with Matlab. The reason why we chose Matlab rather
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than a programming language like C or C++ is the level of difficulty. Matlab

code is easy to write and above all easy to read, even to someone with a very

few knowledge of coding.
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Chapter 1

Stochastic Processes and

Mathematical Finance

1.1 Probability, Stochastic Processes, Filtra-

tions

Definition 1.1 (Algebra) Let Ω be a nonempty set, and let F be a collection

of subsets of Ω. We say that F is an algebra provided that:

(i) Ω ∈ F and ∅ ∈ F ,

(ii) A ∈ F ⇒ Ac = Ω\A ∈ F ,

(iii) A,B ∈ F ⇒ A ∪B ∈ F .

Definition 1.2 (σ-algebra) An algebra F of subsets of Ω is called a σ-algebra

on Ω if for any sequence (An)n∈N ∈ F , we have
∞⋃
n=1

An ∈ F



2 Stochastic Processes and Mathematical Finance

Such a pair (Ω,F) is called a measurable space.

Thus, a σ-algebra on Ω is a family of subsets of Ω closed under any countable

collection of set operations. The σ-algebra generated by all open subsets is

called the Borel σ-algebra: B(E).

Definition 1.3 (Probability) Let Ω be a nonempty set, and let F be a σ-

algebra of subsets of Ω. A probability measure P is a function that, to every

set A ∈ F assigns a number in [0, 1], called the probability of A and written

P(A). We require:

(i) P(Ω) = 1, and

(ii) (countable additivity) whenever A1, A2, . . . is a sequence of disjoint sets

in F , then

P

(
∞⋃
n=1

An

)
=

∞∑
n=1

P(An). (1.1)

The triple (Ω,F ,P) is called a probability space.

A probability space is P-complete if for each B ⊂ A ∈ F such that P(A) = 0,

we have B ∈ F .

In a dynamic context, as time goes on, more information is progressively

revealed to the observer. We must thus add some time-dependent ingredient

to the structure of our probability space (Ω,F ,P).

Definition 1.4 (Filtration) A filtration (or information flow) on (Ω,F ,P)

is an increasing family of σ-algebras (Ft)t∈[0,T ]:

Fs ⊂ Ft ⊂ FT ⊂ F for 0 ≤ s < t ≤ T.
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Ft represents the information available at time t, and the filtration (Ft)t∈[0,T ]

represents the information flow evolving (increasing) with time.

A probability space (Ω,F ,P) equipped with a filtration is called a filtered

probability space (Ω,F ,P, (Ft)t∈[0,T ]).

Definition 1.5 (Usual conditions) We say that a filtered probability space

(Ω,F ,P, (Ft)t∈[0,T ]) satisfies the “usual conditions” if:

(i) F is P-complete.

(ii) F0 contains all P-null sets of Ω. This means intuitively that we know

which events are possible and which are not.

(iii) (Ft)t∈[0,T ] is right-continuous, i.e. Ft = Ft+ :=
⋂
s>tFs.

Definition 1.6 (Stochastic processes) A stochastic process (Xt)t∈[0,T ] is a

family of random variables indexed by time, defined on a filtered probability

space (Ω,F ,P, (Ft)t∈[0,T ]).

The time parameter tmay be either discrete or continuous. For each realization

of the randomness ω, the trajectory X(ω) : t → Xt(ω) defines a function of

time called the sample path of the process. Thus stochastic processes can also

be viewed as random functions.

Definition 1.7 (Càdlàg function) A function f : [0, T ] → Rd is said to

be càdlàg (from French “continu à droite, limite à gauche”) if it is right-

continuous with left limits. If the process is càglàd (left-continuous), one should

be able to “predict” the value at t -“see it coming”- knowing the values before

t.
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Definition 1.8 (Adapted processes) A stochastic process (Xt)t∈[0,T ] is said

to be Ft-adapted (or nonanticipating with respect to the information structure

(Ft)t∈[0,T ]) if, for each t ∈ [0, T ], the value of Xt is revealed at time t: the

random variable Xt is Ft-measurable.

Definition 1.9 (Stopping times) A random time is a positive random vari-

able T ≥ 0 which represents the time at which some event is going to take place.

If, given an information flow Ft, someone can determine whether the event has

happened (τ ≤ t) or not (τ > t), the random time τ is called a stopping time

(or nonanticipating random time). In other words, τ is a non-anticipating

random time ((Ft)-stopping time) if

∀t ≥ 0, {τ ≤ t} ∈ Ft.

1.2 Classes of Processes

1.2.1 Markov Processes

A Markov process is a particular type of stochastic process where only the

present value of a variable is relevant for predicting the future. The past

history of the variable and the way that the present has emerged from the

past are irrelevant (the past history is, say, integrated in the present value).

Definition 1.10 (Markov process) Let (Ω,F ,P) be a probability space, let

T be a fixed positive number, and let (Ft)t∈[0,T ] be a filtration. Consider

an adapted stochastic process (Xt)t∈[0,T ]. If, for a well-behaved (i.e. Borel-

measurable) function f :

E[f(Xt)|Fs] = E[f(Xt)|Xs] (1.2)
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the process (Xt)t∈[0,T ] is a Markov process.

1.2.2 Martingales

Definition 1.11 (Martingale) A càdlàg stochastic process X = (Xt)t∈[0,T ]

is a martingale relative to (P,Ft) if

(i) X is Ft-adapted,

(ii) E[|Xt|] <∞ for any t ∈ [0, T ],

(iii) ∀s < t

E[Xt|Fs] = Xs (1.3)

X is a supermartingale if in place of (iii)

E[Xt|Fs] ≤ Xs ∀s < t (1.4)

X is a submartingale if in place of (iii)

E[Xt|Fs] ≥ Xs ∀s < t (1.5)

In other words, the best prediction of a martingale’s future value is its present

value. Martingale have a useful interpretation in terms of dynamic games: a

martingale is “constant on average”, and models a fair game; a supermartingale

is “decreasing on average”, and models an unfavorable game; a submartingale

is “increasing on average”, and models a favorable game.

Martingales represent situations in which there is no drift, or tendency, though

there may be a lot of randomness. In the typical statistical situation where we

have data = signal + noise, martingales are used to model the noise compo-

nent.

A familiar example of martingale is the Wiener process Wt.
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1.3 Characteristic Functions

The characteristic function of a random variable is the Fourier transform of

its distribution. Many probabilistic properties of random variables correspond

to analytical properties of their characteristic functions, making this concept

very useful for studying random variables.

Definition 1.12 (Characteristic function) The characteristic function of

the Rd-valued random variable X is the function ΦX : Rd → R defined by

ΦX(t) = E(eitX) = Ecos(tX) + iEsin(tX) (1.6)

Let FX be the distribution function of X. Then

ΦX(t) = E(eitX) =

∫ +∞

−∞
eitxdF (x) (1.7)

so that Φ is the Fourier transform of F , but without a constant multiplier such

as (2π)−1/2 which is used in much of Fourier analysis.

The characteristic function of a random variable determines the probability

distribution: two variables with the same characteristic function are identically

distributed. A characteristic function is always continuous and verifies

ΦX(0) = 1 |ΦX(t)| ≤ 1 ΦaX+b(t) = eitbΦX(at)

Theorem 1.13 If ΦX is integrable, then X has a density which is given by

fX(x) =
1

2π

∫ ∞

−∞
e−iuxΦX(u)du.
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Example 1.14 (Gaussian CF) For a normal distribution N(µ,σ2), we can

define the density and characteristic function as:

f(x) =
1

σ
√

2π
e−

1
2

(x−µ)2

σ2 ΦX(z) = eiµz−
1
2
σ2z2 (1.8)

Example 1.15 (Poisson CF) For a Poisson distribution P(λ), we can de-

fine the probability mass and characteristic function as:

f(k) := P(X = k) =
e−λλk

k!
ΦX(z) = e−λ(1−eiz) (1.9)

1.4 Brownian Motion

1.4.1 Normal Distribution

The normal distribution, N(µ, σ2) is (one of) the most important distributions.

As seen before, its characteristic function is given by:

ΦNormal(z;µ, σ
2) = eiµz−

1
2
σ2z2 (1.10)

and the density function is:

fNormal(x;µ, σ) =
1

σ
√

2π
e−

1
2

(x−µ)2

σ2 (1.11)

The normal, by definition, is symmetric around its mean, has a skewness equal

to 0 and a kurtosis equal to 3.

1.4.2 Brownian Motion

Brownian motion is the dynamic counterpart - where we work with evolution

in time - of the Normal distribution. Brownian motion originates in work of
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the botanist Robert Brown in 1828. It was first introduced into finance by

Louis Bachelier in 1900, and developed in physics by Albert Einstein in 1905.

Brownian motion was first proved mathematically by Norbert Wiener in 1923.

In honor of this, Brownian motion is also known as the Wiener process.

Definition 1.16 (Brownian motion) A stochastic process X = (Xt)t≥0 is

a standard (one-dimensional) Brownian motion, W , on some probability space

(Ω,F ,P), if

(i) X(0) = 0, almost surely,

(ii) X has independent increments: X(t+u)−X(t) is independent of σ(X(s) :

s ≤ t) for u ≥ 0,

(iii ) X has stationary increments: the law of X(t+ u)−X(t) depends only

on u,

(iv ) X has Gaussian increments: X(t + u) − X(t) is normally distributed

with mean 0 and variance u, i.e. X(t+ u)−X(t) ∼ N(0, u),

(v) X has continuous paths: X(t) is a continuous function of t, i.e. t →

X(t, ω) is continuous in t for all ω ∈ Ω.

Filtration for Brownian motion

Definition 1.17 Let (Ω,F ,P) be a probability space on which is defined a

Brownian motion Wt, t ≥ 0. A filtration for the Brownian motion is a collec-

tion of σ-algebras Ft, t ≥ 0, satisfying:
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Figure 1.1: Sample path of a standard Brownian motion

(i) (Information accumulates) For 0 ≤ s < t, every set in Fs is also in

Ft. In other words, there is at least as much information available at the later

time Ft as there is at the earlier time Fs.

(ii) (Adaptivity) For each t ≥ 0, the Brownian motion Wt at time t is Ft
measurable. In other words, the information available at time t is sufficient to

evaluate the Brownian motion Wt at that time.

(iii) (Independence of future increments) For 0 ≤ t < u, the increment

Wu−Wt is independent of Ft. In other words, any increment of the Brownian

motion after time t is independent of the information available at time t.
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Properties of Brownian motion

Definition 1.18 (Martingale property) Brownian motion is a martingale.

E[Wt|Fs] = E[(Wt −Ws) +Ws|Fs]

= E[Wt −Ws|Fs] + E[Ws|Fs]

= E[Wt −Ws] +Ws

= Ws (1.12)

Proposition 1.19 (Path properties) Brownian motion has continuous paths,

i.e. Wt is a continuous function of t. However, the paths of Brownian mo-

tion are very erratic; they are nowhere differentiable. The paths of Brownian

motion are also of infinite variation, i.e., their variation is infinite on every

interval.

Definition 1.20 (Brownian scaling)

If Wt is a Brownian motion, for any c > 0,

W̃t := cWt/c2 , t ≥ 0 (1.13)

is also a Brownian motion.

Theorem 1.21 (Classic Brownian motion martingales) Each of the fol-

lowing processes is a continuous martingale with respect to the standard Brow-

nian filtration:

1. Xt = Wt

2. Xt = W 2
t − t

3. Xt = eαWt− 1
2
α2t
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1.5 Stochastic Integration - Itô Calculus

Stochastic integration was introduced in 1944 by K.Itô in 1944, hence its name

Itô calculus. It gives a meaning to∫ t

0

XtdYt

for suitable stochastic processes X = (Xt, t ≥ 0) and Y = (Yt, t ≥ 0), the

integrand and the integrator. Because we will take as integrator processes

of infinite (unbounded) variation on every interval (e.g. Brownian motion,

Yt = Wt), stochastic integral can be quite different from classical deterministic

integrals.

1.5.1 Itô’s Lemma

Suppose that b is adapted and locally integrable (so
∫ t

0
b(s)ds is defined as an

ordinary integral), and σ is adapted and measurable so that
∫ t

0
σ(s)dW (s) is

defined as a stochastic integral. Then

X(t) := x0 +

∫ t

0

b(s)ds+

∫ t

0

σ(s)dW (s) (1.14)

defines a stochastic process (or Itô process) X with X(0) = x0. It is customary

to express such an equation in differential form, in terms of the stochastic

differential equation

dXt = b(t)dt+ σ(t)dWt, X(0) = x0. (1.15)

Now suppose f : R2 → R is a function, continuously differentiable once in

its first argument (which will denote time) and twice in its second (space):

f ∈ C1,2. The question arises of giving a meaning to the stochastic differential

df(Xt) of the process f(Xt), and finding it.
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Theorem 1.22 (Itô’s Lemma) If a stochastic process Xt has stochastic dif-

ferential given by dXt = b(t)dt + σ(t)dWt, then f = f(t,Xt) has stochastic

differential

df =
∂f

∂t
dt+

∂f

∂x
dXt +

1

2

∂2f

∂x2
dXtdXt (1.16)

or reduced to an expression that involves only dt and dWt

df =

(
∂f

∂t
+ b

∂f

∂x
+

1

2
σ2∂

2f

∂x2

)
dt+

∂f

∂x
σdWt (1.17)

since dWtdWt = dt and dtdt = 0. Or, with f(0, x0) the initial value of f

f = f(0, x0) +

∫ t

0

(
∂f

∂t
+
∂f

∂x
b+

1

2

∂2f

∂x2
σ2

)
dt+

∫ t

0

∂f

∂x
σdWt. (1.18)

Proposition 1.23

E(f(t,Xt) = f(0, x0) +

∫ t

0

E

(
∂f

∂t
+
∂f

∂x
b+

1

2

∂2f

∂t2
σ2

)
dt. (1.19)

1.5.2 Geometric Brownian Motion

Now we have both Brownian motion W and Itô’s Lemma to hand, we can

introduce a very important stochastic process, a relative of Brownian motion

- geometric Brownian motion.

Suppose we wish to model the time evolution of a stock price S(t). Consider

how S will change in some small time-interval from the present time t to a time

t + dt in the near future. Writing dS(t) for the change S(t + dt)− S(t) in S,

the return on S in this interval is dS(t)/S(t). Is is economically reasonable to

decompose this return into two components, a systematic part and a random

part. The systematic part could be modeled by µdt, where µ is some parameter

representing the mean rate of return of the stock. The random part could be
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Figure 1.2: Sample path of a geometric Brownian motion

modeled by σdW (t), where dW (t) represents the noise term driving the stock

price dynamics, and σ is a second parameter describing how much effect this

noise has (thus σ is called the volatility of the stock).

Putting this together, we have the stochastic differential equation

dSt = St(µdt+ σdWt), S(0) > 0. (1.20)

This differential equation has the unique solution

St = S(0)e(µ−
1
2
σ2)t+σWt (1.21)

Proof: Let (Wt)t≥0 be a Brownian motion, let (Ft)t≥0 be an associated

filtration, and let α(t) and σ(t) be adapted processes. Define the Itô process

Xt =

∫ t

0

σ(s)dWs +

∫ t

0

(
α(s)− 1

2
σ2(s)

)
ds. (1.22)

Then

dXt = σ(t)dWt +

(
α(t)− 1

2
σ2(t)

)
dt,
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and

dXtdXt = σ2(t)dWtdWt = σ2(t)dt.

Consider an asset price process given by

St = S(0)eXt = S(0)exp

{∫ t

0

σ(s)dWs +

∫ t

0

(
α(s)− 1

2
σ2(s)

)
ds

}
, (1.23)

where S(0) is nonrandom and positive. We may write St = f(Xt), where

f(x) = S(0)ex, f ′(x) = S(0)ex and f ′′(x) = S(0)ex. According to the Itô

formula

dSt = df(Xt)

= f ′(Xt)dXt +
1

2
f ′′(Xt)dXtdXt

= S(0)eXtdXt +
1

2
S(0)eXtdXtdXt

= StdXt +
1

2
StdXtdXt

dSt = α(t)Stdt+ σ(t)StdWt (1.24)

The asset price St has instantaneous mean rate of return α(t) and volatility

σ(t). Both the mean rate of return and the volatility are allowed to be time-

varying and random. This example includes all possible models of an asset

price process that is always positive, has no jumps, and is driven by a simple

Brownian motion. Although the model is driven by a Brownian motion, the

distribution of St does not need to be log-normal because α(t) and σ(t) are

allowed to be time-varying and random.

If α and σ are constant, we have the usual geometric Brownian motion model

dSt = St(αdt+ σdWt), and the distribution of St is log-normal.

St = S(0)exp

{(
α− 1

2
σ2

)
t+ σWt

}
. (1.25)
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1.6 Mathematical Finance in Continuous Time

1.6.1 Trading strategies

Suppose a market with d assets whose prices are described by a stochastic

process St = (S1
t , . . . , S

d
t ). We can create a portfolio φ = (φ1, . . . , φd) composed

of a certain amount of each asset. The value of the portfolio is thus given by

Vt(φ) =
d∑

k=1

φkSkt = φ · St. (1.26)

A trading strategy consists of maintaining a dynamic portfolio φt by buying

and selling assets at different dates T0 = 0 < T1 < T2 < . . . < Tn < T (between

two transaction dates, the portfolio remains unchanged). The portfolio φt held

at date t may be expressed as:

φt = φ01t=0 +
n∑
i=0

φi1]Ti,Ti+1](t). (1.27)

Then, we can define the capital gain of the portfolio up to time t as:

Gt(φ) = φ0S0 +

j−1∑
i=0

φi(STi+1
− STi

) + φj(St − STj
) for Tj < t ≤ Tj+1

Gt(φ) =

∫ t

0

φudSu (1.28)

The last part of the first expression allows to calculate the “current balance”

between Tj (the last transaction date) and t (as transaction dates are not

continuous in time and t may be fall between two transaction dates).

The difference between the value of the portfolio and its capital gain gives the

cost of the strategy up to time t:

Ct(φ) = Vt(φ)−Gt(φ) = φtSt −
∫ t

0

φudSu. (1.29)
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A strategy φ is said to be self-financing if the cost is equal to zero: the value of

the portfolio is then equal to its initial value plus the capital gain accumulated

between 0 and t:

Vt(φ) =

∫ t

0

φudSu (1.30)

1.6.2 Risk-Neutral Pricing Pricing and Martingale Mea-

sures

Pricing Rules

In mathematical finance, two important concepts are the absence of arbitrage,

which imposes constraints on the way instruments are priced in a market and

the notion of risk-neutral pricing, which represents the price of any instrument

in an arbitrage-free market as its discounted expected payoff under an appro-

priate probability measure called the “risk-neutral” measure. As these two

concepts use the important notion of equivalent martingale measure, let’s try

to understand it better, its construction, its relation to arbitrage pricing and

market completeness.

Consider a market whose possible evolutions between 0 and T are described

by a scenario space (Ω,F). F contains all statements which can be made about

behavior of prices between 0 and T . Sit(ω) represents the value of asset i at

time t in the market scenario ω and S0
t is a numéraire.

Definition 1.24 (Numéraire) A numéraire is a price process S0
t almost surely

strictly positive for each t ∈ [0, T ].

A typical example of numéraire is a cash amount with interest rate r: S0
t = ert.
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Discounting is done using the numéraire S0
t : for any portfolio with value Vt,

the discounted value is defined by

V̂t =
Vt
S0
t

and B(t, T ) = S0
t /S

0
T is called the discount factor. If the numéraire is S0

t = ert,

then S0
T = erT and the discount factor is B(t, T ) = e−r(T−t).

A contingent claim with maturity T can be represented as a payoff at maturity,

H(ω) in each scenario. How can we attribute a value to each contingent claim

H? A pricing rule is a procedure which attributes to each contingent claim a

value Πt(H) at each point of time, using the information given at t.

For any random payoff, we have thus the following formula:

Π0(H) = e−rTEQ[H] (1.31)

where Q is called the risk-neutral measure. It is important to understand that

Q has nothing to do with the objective probability of occurrence of scenarios.

Although it is a probability measure on the set of scenarios, Q is not the

probability that such event happens but the value of a bet on the occurrence

of this event. A risk-neutral measure is just a convenient representation of the

pricing rule Π: it is not obtained by an econometric analysis of time-series but

by looking at prices of contingent claims at t = 0.

However, the pricing rule Π must be time consistent, i.e. the value at 0 of the

payoff H at T is the same as the value at 0 of the payoff Πt(H) at t, then

Q should be restrict to Ft and Πt(H) is given by the discounted conditional

expectation with respect to Q:

Πt(H) = e−r(T−t)EQ[H|Ft]. (1.32)
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Now, the problem is to understand which probability measure Q one shall

use, and for this we must examine what restrictions are imposed to Q by the

requirement of absence of arbitrage.

Arbitrage-Free Pricing

Assume that, in addition to the market scenarios (Ω,F) and the information

flow Ft, we know something about the probability of occurrence of these sce-

narios, represented by a probability measure P, which represents the objective

probability of future scenarios.

A fundamental requirement for a pricing rule is the absence of arbitrage oppor-

tunities. As seen before, an arbitrage opportunity is a self-financing strategy

φ which can lead to a positive terminal gain, but with probability 0 to obtain

a loss.

Definition 1.25 (Equivalent Probability Measures) The probabilities Q

and P are said to be equivalent if they define the same set of (im)possible events

(null set):

P ∼ Q : ∀A ∈ F Q(A) = 0⇐⇒ P(A) = 0. (1.33)

Let Si be an asset traded at price Sit . This asset can be held until T ,

generating a terminal payoff SiT , or be sold for Sit : the resulting sum invested

at the interest rate r will then generate a terminal wealth of er(T−t)Sit . these two

buy-and-hold strategies are self financing and have the same terminal payoff

so, according to the law of one price, they should have the same value at t:

EQ[SiT |Ft] = EQ[er(T−t)Sit |Ft] = er(T−t)Sit . (1.34)
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Dividing by S0
T = erT we obtain:

EQ
[
SiT
S0
T

|Ft
]

=
Sit
S0
t

, i.e., EQ[ŜiT |Ft] = Ŝit . (1.35)

Therefore absence of arbitrage implies that discounted values Ŝit = e−rtSit of

all traded assets are martingales with respect to the probability measure Q. A

probability measure verifying these two equations is called an equivalent mar-

tingale measure. Any arbitrage-free pricing rule is thus given by an equivalent

martingale measure. Conversely, it could be easily shown that any equivalent

martingale measure Q defines an arbitrage-free pricing rule. There is hence a

one-to-one correspondence between arbitrage-free pricing rules and equivalent

martingale measure.

Definition 1.26 (Equivalent Martingale Measure) We say that a prob-

ability measure Q on the market scenarios is an equivalent martingale measure

if:

(i) Q is equivalent to P, i.e. they have the same null sets (events which

cannot happen under P also cannot happen under Q and vice versa),

P ∼ Q : ∀A ∈ F Q(A) = 0⇐⇒ P(A) = 0 (1.36)

(ii) the discounted stock-price process Ŝt = e−rTSt, t ≥ 0 is a martingale

under Q.

EQ[ŜiT |Ft] = Ŝit (1.37)

Definition 1.27 (Risk-Neutral Pricing) In a market described by a prob-

ability measure P on scenarios, any arbitrage-free pricing rule Π can be repre-

sented as

Πt(H) = e−r(T−t)EQ[H|Ft], (1.38)
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where Q is an equivalent martingale measure.

Theorem 1.28 (Fundamental Theorem of Asset Pricing) The market model

defined by (Ω,F ,P,Ft) and asset prices (St)t∈[0,T ] is arbitrage-free if and only

if there exists a probability measure Q ∼ P such that the discounted assets

(Ŝt)t∈[0,T ] are martingales with respect to Q.

1.6.3 Market Completeness

Besides the idea of absence of arbitrage, another important concept originat-

ing the Black-Scholes model is the concept of perfect hedge: a self-financing

strategy (φ0
t , φt) is said to be a perfect hedge (or a replication strategy) for a

contingent claim H if:

H = V0 +

∫ T

0

φtdSt +

∫ T

0

φ0
tdS

0
t (1.39)

A market is said complete if any contingent claim admits a replicating portfolio.

In a complete market, there is only one way to define the value of a contingent

claim: the value of any contingent claim is given by the initial capital needed

to set up a perfect hedge for H. All equivalent martingale measures give the

same pricing rules, therefore we have the following theorem:

Theorem 1.29 (Fundamental Theorem of Asset Pricing, 2nd) A mar-

ket defined by the assets (S0
t , S

1
t , . . . , S

d)t∈[0,T ], described as stochastic processes

on (Ω,F ,P,Ft) is complete if and only if there exists a unique martingale mea-

sure Q equivalent to P.



Chapter 2

Black-Scholes Model and its

Limitations

2.1 The Black-Scholes Model

The theory of mathematical finance began in 1900 when the french mathe-

matician Louis Bachelier, in his thesis Théorie de la spéculation [7], proposed

the following model to describe the price S of an asset at the Paris Bourse:

St = S0 + σWt

where Wt is a Brownian motion.

However, this model had many imperfections, including, for example, negative

stock prices. A more appropriate model was thus suggested by Samuelson in

1965 [85]: geometric Brownian motion in which log-price follows a Brownian

motion.

In 1973, Black, Scholes [19] and Merton [73], in their famous papers, demon-
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strated how to price a European call option based on this model. Indeed, they

assume the stock price follows a geometric Brownian motion and give some

conditions to derive the option pricing formula:

1. There are no transaction costs or taxes, trading takes place continuously

in time and borrowing and short-selling are allowed (the market is fric-

tionless).

2. The short-term interest rate (the risk-free rate r) is known and constant

through time.

3. The stock pays no dividend during the life of the option.

4. The option is European (it can only be exercised at the expiration date).

5. The stock price follows a geometric Brownian motion through time which

produces a log-normal distribution for stock price between any two points

in time.

6. The volatility is constant for any strike and maturity.

It has been shown that the model can be easily modified when the interest

rate is stochastic or a function of t, when the stock gives dividend or when the

option is American.

Because of its simplicity and its independence of investors expectations about

future asset returns, the Black-Scholes formula is widely used among practi-

tioners for pricing and hedging options.
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In the Black-Scholes world, the stock price, S, follows a geometric Brownian

motion,

dSt = µStdt+ σStdWt, (2.1)

where µ and σ are known constants, Wt is a standard Brownian motion. It

can be shown that the solution of this stochastic differential equation is

St = S0e
(µ− 1

2
σ2)t+σWt (2.2)

The essential step in the Black-Scholes methodology is the construction of a

risk-less portfolio. Then, based on the no-arbitrage argument, a partial dif-

ferential equation can be derived for the price of a call option. This partial

differential equation can be easily solved and gives a closed-form solution. The

main derivation goes as follows.

Suppose that C is the price of a call option or other derivative contingent

on S. By Ito’s lemma,

dC =

(
∂C

∂t
+
∂C

∂S
µS +

1

2

∂2C

∂S2
σ2S2

)
dt+

∂C

∂S
σSdWt. (2.3)

Next, we set up a portfolio consisting of a short position in a call option and

a long position of ∆ units of stock. Define Π as the value of the portfolio,

Π = −C + ∆S. (2.4)

The change in the value of this portfolio in a small time interval is given by

dΠ = −dC + ∆dS. (2.5)
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Substituting (2.1), (2.3) into (2.5) yields

dΠ = −
(
∂C

∂S
µS +

∂C

∂t
+

1

2

∂2C

∂S2

)
dt− ∂C

∂S
σSdWt + ∆µSdt+ ∆σSdWt

=

(
−∂C
∂S

µS +
∂C

∂t
+

1

2

∂2C

∂S2
+ ∆µS

)
dt+

(
−∂C
∂S

σS + ∆σS

)
dWt

To make the portfolio risk-less, we choose ∆ = ∂C
∂S

. Then

dΠ =

(
−∂C
∂t
− 1

2

∂2C

∂S2
σ2S2

)
dt. (2.6)

We can see that making the portfolio risk-less, we have removed any source of

randomness (the Brownian motion Wt) and the value of the portfolio is now

deterministic.

On the other hand, in the absence of arbitrage opportunities, this risk less

portfolio must earn a risk-free rate, r,

dΠ = rΠdt. (2.7)

Substituting from (2.4) and (2.6), this becomes(
−∂C
∂t
− 1

2

∂2C

∂S2
σ2S2

)
dt = r

(
−C +

∂C

∂S
S

)
dt,

or
∂C

∂t
+ rS

∂C

∂S
+

1

2
σ2S2∂

2C

∂S2
= rC. (2.8)

Equation (2.8) is the famous Black-Scholes partial differential equation. The

solution depends on the boundary conditions. In the case of a European vanilla

call option, the final condition is that the option price is simply its payoff at

maturity.

C = max(S −K, 0), t = T, (2.9)
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where K is the strike price. So the equation can be solved by backward in

time with the final condition. The Black-Scholes formula for the European

call option is

C = S0N(d1)−Ke−rTN(d2), (2.10)

where

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

, d2 =
ln(S0/K) + (r − σ2/2)T

σ
√
T

= d1−σ
√
T ,

(2.11)

and S0 is the current stock price, T is the time to maturity, σ is the stock

price volatility, N(x) is the cumulative probability distribution function for

the standard normal distribution. The price of the European put option can

be computed by the Put-Call parity.

C +Ke−rT = P + S0. (2.12)

The expected return µ does not appear in the Black-Scholes equation. This

means the pricing formula is independent of the individual’s preference. This

amazing property together with its simplicity makes the Black-Scholes pricing

formula very popular among practitioners.

Another approach to derive the Black-Scholes formula is the risk-neutral

valuation method. The price of the option, C, is the expected value of the

option at maturity in a risk-neutral world discounted at the risk-free rate, that

is

C = e−rTEQ[max(ST −K, 0)], (2.13)
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where EQ denotes the expected value in a risk-neutral world. Q is also called

the equivalent martingale measure. In the risk-neutral world,

ST = S0e
(r− 1

2
σ2)T+σWt (2.14)

So, the expectation in (2.13) can be calculated by integrating over the normal

distribution. We can get the same pricing formulas as (2.10) and (2.11). The

above two pricing methods, no-arbitrage valuation and risk-neutral valuation,

are two general approaches to pricing options in modern finance literature.

2.2 The Limitations of the Black-Scholes Model

2.2.1 The Evidence of the Volatility Smile

Although the Black-Scholes formula is powerful to price stock options and

simple to use, many empirical results show that it may systematically misprice

a number of options. The most well-known phenomenon related to the biases

of the Black-Scholes model is the so-called volatility smile or skew. The implied

volatilities from the market prices of options tend to vary by strike prices and

maturities.

The implied volatility is the volatility used in the Black-Scholes model such

that the observed market price of the option equals the model price.

cBS(σ) = cMarket (2.15)

Consider call or put options on a given stock or an index. We take options

with the same maturity but different strike prices. We apply the Black-Scholes
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Figure 2.1: Volatility smile. Implied volatilities for S&P 500 call options.

Maturity is Jun. 17, 2005. Valuation date is Feb. 24, 2005. the S&P 500

index is 1200.20 on the valuation day. Use r = 0.011.

model to back out the implied volatilities and plot them against the strike

prices. We expect the implied volatilities to be identical because the constant

volatility is one of the assumptions of the Black-Scholes model. However, it is

likely not the case in practice. Most option markets exhibit persistent patterns

of non-constant volatilities. In some markets, the implied volatilities form a

“U-shape”, which is called the volatility smile. In-the-money options and

out-of-the-money options have higher implied volatilities than at-the-money

options. Generally, the shape of the volatility smile is not symmetric. It is

more a skewed curve. People also call it volatility skew or volatility smirk.

Usually, the smile is significant for short maturity options and tends to be flat

for long maturity options. The volatility smile is caracteristic of derivatives on

currencies and the volatility skew of derivatives on stocks or index.
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Figure 2.2: Volatility surface. Implied volatilities of vanilla options on the

EUR/USD exchange rate on Nov. 5, 2001.

In addition to calculating a volatility smile, we can also calculate a volatility

term structure, a function of maturity for a fixed strike price. The implied

volatilities also vary with maturity. Combining the volatility smile and the

volatility term structure, we can generate a volatility surface, one dimension

for strike price and the other for maturity.

There are various explanations for the phenomenon of volatility smile.

Some of explanations are related to the idealized assumptions of the Black-

Scholes model which says the asset price follows a geometric Brownian motion

with a constant volatility. Other explanation of this smile is that it is caused

by strong demand for slightly out-of-the-money put options. A fund manager

has his performance reviewed every three months. He wants to be protected

against the possibility of a market crash in the mean time. Therefore, he buy

put options which guarantee that his portfolio’s value can only fall by a small

amount even if the market crashes. Thus he is buying the put option as insur-
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ance. Since there are many fund managers doing the same thing, hedging is

impossible, and no one wants extra exposure to crashes, the market is all one

way, and the price of the put option is bid up.

Obviously, the phenomenon of volatility smile is not consistent with the Black-

Scholes model.

2.2.2 The Incompleteness of Markets

The Black-Scholes model assumes that the market is complete, i.e. that

any contingent claim admits a replicating portfolio, hence it can be perfectly

hedged. However, while most stochastic models used in option pricing are

arbitrage-free, only a few of these are complete: stochastic volatility and

exponential-Lévy models (as we will see shortly) are examples of incomplete

models.

But, is market completeness so important for modeling option prices? Every-

body knows that perfect hedge cannot exist in practice: all risks cannot be

hedged. Some people talked about the inconsistency of the idea of “friction-

less” market with the reality (no costs, continuous trading available, etc.) but

this feature represents only a very little part of the risk that someone doesn’t

take in consideration with a diffusion model. Dynamic hedging represents the

basis of the fundamental idea of Black-Scholes model: Delta hedging. Dynamic

hedging allows to continuously modify your position in option to let unchanged

the Delta ratio. Hence, the unique risk admitted by Black-Scholes model, delta

risk can be easily hedged.

However, taking positions in options induces other market risks, as gamma

risk or vega risk (the “volatility” risks), that a diffusion model doesn’t even
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mention. The motivation for using jumps in a model is that stock markets do

crash and during a crash there is no opportunity to carry out a continuously-

changing Delta hedge. One consequence of this will be the impossibility of

perfect hedging: at a given time the stock price can increase slightly or de-

crease slightly or fall a lot. It is not possible to be hedged against all of these

simultaneously. The impossibility of perfect hedging means that the market

is incomplete, that is not every option can be replicated by a self-financing

portfolio. Hence, it makes much more sense to use incomplete market models

where the risk of hedging can be quantified rather than sticking to complete

market models where the risk of hedging is by definition zero.

2.2.3 Are these Returns Really Log-normally Distributed?

If the stock price follows a geometric Brownian motion as in equation (2.1), the

stock price is log-normally distributed, or, the logarithmic return is normally

distributed. From figure 2.3, we see that price changes are small in sequential

days in some periods and large in other periods. This is called volatility clus-

tering. This feature implied that the volatility is autocorrelated.

Then, if confronted with figure 2.4, it is easy to see that the returns of the

Nasdaq are clearly not log-normally distributed.

Empirical studies find stock returns have a higher kurtosis (higher central peak

and fatter tails) compared to the normal distribution which is assumed by the

Black-Scholes model. Figure 2.5 shows clearly that pattern (the distribution

of the Nasdaq returns has an excess kurtosis of 2.5817). Leptokurtosis is

consistent with the volatility smile.
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Figure 2.3: Nasdaq daily returns from Nov. 16, 1999 to Nov. 16, 2006

Figure 2.4: Returns of a simulated geometric Brownian motion
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Figure 2.5: Nasdaq returns and normal distributions

2.2.4 New Models, New Solutions, New Problems

Recent developments in mathematical finance have explored several way to

model the underlying. One of the mains goals of these models is to capture

the Volatility Smile.

The Volatility Matrix

The simplest way to incorporate the volatility smile is to use the volatility

matrix. Market prices of options are used to generate implied volatilities. The

volatility matrix replicates the volatility surface. When we want to price a new

option, we can pick up a corresponding volatility and apply the Black-Scholes

model to get the price.

One way to modify the constant volatility assumption of the Black-Scholes

model is to assume that volatility is a deterministic function of time and stock
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price: σ = σ(t, S). In the special case of σ = σ(t), a deterministic function

of time, the option price will just be the Black-Scholes formula with volatility
√
σ2, where σ2 = 1

T

∫ T
0
σ2(s)ds.

Constant Elasticity of Variance

Another famous model with deterministic volatility is the constant elasticity

of variance (CEV) model proposed by Cox and Ross in 1976, [35]. The stock

price in this model is

dS = µSdt+ σSαdWt, (2.16)

where α is a positive constant. So the stock price has volatility σSα−1. When

α = 1, we have the Black-Scholes case. When α < 1, the volatility increases

as the stock price decreases. This can generate a distribution with a fatter left

tail and a thinner right tail. When α > 1, the situation is reversed. So the

volatility smile can be incorporated in this model. Cox and Ross also provide

valuation formulas for European call and put options in the CEV model. Sev-

eral studies have reported that the CEV model outperforms the Black-Scholes

model in most cases. The problem is that the option price in the CEV model

will approach either zero or infinite in the long run.

Local Volatility Models

Derman and Kani, in 1994, [38], [39], proposed a so-called implied tree model,

which also assumes that the volatility is a deterministic function of stock price
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Figure 2.6: A risk-neutral stock tree with constant volatility and an implied

tree.

and time.

dSt
St

= µdt+ σ(t, St)dWt (2.17)

The implied tree model is also called the local volatility model. More gener-

ally, this type of model incorporate the volatility smile in the construction of

the tree (see figure 2.6). And this tree is particularly used for pricing exotic

options as their prices are consistent with all traded vanilla options. Deter-

ministic volatility models allow volatility to change in a deterministic way.

Stochastic Volatility Models

But empirical evidence shows the variance of the stock returns is no stationary.

The relation between the volatility and the stock or time changes with time.

A trader can model the volatility as a function of the stock price and time

this week, but next week, this function will be quite different. Hence, it is not

enough to allow volatility to change deterministically. Subsequent researches

model the volatility as a stochastic variable. In stochastic volatility models,
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volatility is modeled as a separate stochastic process. A general representation

of the continuous-time stochastic volatility model may be written as

dSt = µStdt+ σtStW1t, (2.18)

σt = f(Yt), (2.19)

dYt = a(t, Yt)dt+ b(t, Yt)dZt, (2.20)

dW1tdZt = ρdt. (2.21)

Here, the drift µ is still a constant. σt is the volatility of the stock price.

f is some positive function. Yt is some underlying process which determines

the volatility. W1t and Zt are two correlated standard Brownian motions. The

constant parameter ρ is the correlation coefficient between these two Brownian

motions. We can also rewrite Zt as

Zt = ρW1t +
√

1− ρ2W2t, (2.22)

where W2t is a standard Brownian motion independent of W1t. There are

some economic arguments for a negative correlation between stock price and

volatility shocks.

This general stochastic volatility model contains many famous models, we give

three examples:

1. Hull-White - Hull and White (1987), [61] assume a geometric Brownian

motion for the variance,

dYt = αYtdt+ βYtdZt (2.23)

where α and β are constants, f(y) =
√
y. This is the first stochastic

volatility model for pricing options in financial literature.
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2. Stein-Stein - Stein and Stein (1991), [92] assume the driving process

Yt is an Ornstein-Uhlenbeck (OU) process,

dYt = α(ω − Yt)dt+ βdZt. (2.24)

It is a mean-reverting process. From econometric studies, people believe

that volatility is mean-reverting. However, it is not appropriate to simply

assume that the volatility is an OU process, because Yt can be negative

in OU process, so they assume f(y) = |y|.

3. Heston - Heston (1993), [58] assumes Yt follows a Cox-Ingersoll-Ross

(CIR) process,

dYt = κ(θ − Yt)dt+ ξ
√
YtdZt, (2.25)

and f(y) =
√
y. θ is the long-run variance, κ is the rate of mean reversion,

ξ is called volatility of volatility. Yt is strictly positive when 2κθ ≥ ξ2 and

non-negative when 0 ≤ 2κθ < ξ2. This model is very important because

it provides a closed-form formula for the European option and ρ can be

non-zero.

Jump Processes

Finally, another important element in option pricing models is modeling stock

prices with jumps. Jump (Lévy) processes have become increasingly popular

in mathematical finance because they can describe the observed reality of fi-

nancial markets in a more accurate way than basic diffusion models based on

Brownian motion. In the “real” world, we observe that asset price processes

have jumps or spikes and risk-managers have to take them into account. The
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Figure 2.7: Sample paths of the stock price and variance under the Bates and

Heston models

figure 2.8, which represents Standard and Poors Index prices on March 07-28,

2008, is a classic example of jumps in stock prices. During the speculative bub-

ble, as shown in figure 2.9, Yahoo! stock was characterized by heavy spikes.

Nasdaq stocks, as Microsoft (see figure 2.10) or Cisco (figure 2.11), are char-

acterized by frequent jumps in prices.

Merton, in 1976, [74], added random jumps to the geometric Brownian

motion. The stochastic process for the stock price is

dS

S
= (µ− λk)dt+ σdW + dp, (2.26)

where λ is the average number of jumps in one period, k is the average jump

size, dp is the Poisson process generating the jumps. This jump-diffusion

model is useful when the underlying asset price has large changes, because

continuous-time models cannot capture this property.

Some other researchers even model the stock price as a pure jump process.
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Figure 2.8: Standard and Poors Index prices (March 07-28, 2008, 10-min bars)

Figure 2.9: Yahoo! stock price during the speculative bubble (1999-2001)
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Figure 2.10: Microsoft stock price since the IPO (1986-2007)

Figure 2.11: Cisco stock price from 1990 (IPO) to 2001
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They also combine stochastic volatility and jump-diffusion (Bates, 1996, [13]).

We will focus on jump processes in the next chapters.



Chapter 3

Lévy Processes

As seen before, asset price time-series present jumps and spikes and the em-

pirical distribution of asset returns exhibits fat tails and skewness, behavior

that deviates from normality. Moreover, the implied volatilities are constant

neither across strike nor across maturities. Hence, models that accurately fit

return distributions are essential. Lévy processes provide us with the appro-

priate framework to adequately describe all these features.

Processes with independent and stationary increments are name Lévy pro-

cesses after the French mathematician Paul Lévy (1886-1971), who made

the connection with infinitely divisible laws, characterized their distributions

(Lévy-Khintchine formula) and described their structure (Lévy-Itô decompo-

sition).
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3.1 Poisson Processes

The fundamental pure jump process is the Poisson process. All jumps of a

Poisson process are of size one. A compound Poisson process is like a Poisson

process, except that the jumps are of random size.

3.1.1 Poisson Process

In the way that Brownian motion is the basic building block for continuous-

path processes, the Poisson process serves as the starting point for jump pro-

cesses.

Exponential Random Variables

We say that a positive variable τ follows an exponential distribution with pa-

rameter λ > 0 if it has a probability density function

λe−λt1t≥0 (3.1)

and the expected value of τ is E(τ) = 1
λ
.

The distribution function is given by

∀t ∈ [0,∞] F (t) = P(τ ≤ t) = 1− e−λt (3.2)

The exponential distribution has an important property called memorylessness:

∀t, s > 0, P(T > t+ s|T > t) = P(T > s). (3.3)
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Figure 3.1: Sample path of a Poisson process. λ = 25.

Poisson Distribution

An integer valued random variable N is said to follow a Poisson distribution

with parameter λ if

∀n ∈ N, P(N = n) = e−λ
λn

n!
(3.4)

Poisson Process

To construct a Poisson process, we begin with a sequence τ1, τ2, . . . of indepen-

dent exponential random variables, all with the same mean 1
λ
. We will build

a model in which an event, which we call a “jump”, occurs from time to time.

The first jump occurs at time τ1, the second occurs τ2 time units after the first,

the third occurs τ3 time units after the second, etc. The τk random variables

are called the interarrival times. The arrival times are

Sn =
n∑
k=1

τk (3.5)
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Figure 3.2: Sample path of a compensated Poisson process. λ = 25.

(i.e., Sn is the time of the nth jump). The Poisson process Nt counts the

number of jumps that occur at or before time t

Nt =
∑
n≥1

1t≥Tn (3.6)

The Poisson process is therefore defined as a counting process.

The sample paths t 7→ Nt are càdlàg. Nt has independent increments, and

these increments are homogeneous. Nt has the Markov property E[f(Nt)|Nu, u ≤

s] = E[f(Nt)|Ns], ∀t > s. However, the Poisson process is not a martingale.

The characteristic function of Nt is given by

ΦNt(u) = E[eiuNt ] = eλt(e
iu−1), ∀u ∈ R (3.7)
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3.1.2 Compensated Poisson Process

Let Nt be a Poisson process with intensity λ. We define the compensated

Poisson process

Ñt = Nt − λt. (3.8)

Then, Ñt is a martingale.

PROOF: Let 0 ≤ s ≤ t be given. Because Nt −Ns is independent of Fs and

has expected value λ(t− s), we have:

E[Ñt|Fs] = E[Ñt − Ñs|Fs] + E[Ñs|Fs]

= E[Nt −Ns − λ(t− s)|Fs] + Ñs

= E[Nt −Ns]− λ(t− s) + Ñs

= Ñs. (3.9)

The characteristic function is given by

ΦÑt
(u) = eλt(e

iu−1−iu) ∀u ∈ R (3.10)

3.1.3 Compound Poisson Process

Definition 3.1 (Compound Poisson Process) A compound Poisson pro-

cess with intensity λ > 0 and jump size distribution f is a stochastic process

Xt defined as

Xt =
Nt∑
i=1

Yi (3.11)

where jumps sizes Yi are i.i.d. with distribution f and (Nt) is a Poisson process

with intensity λ, independent from (Yi)i≥1.
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Figure 3.3: Sample path of a compound Poisson process. λ = 25.

Properties of the Compound Poisson Process

The following properties of a compound Poisson process are easily deduced

from the definition:

(i) The sample paths of X are càdlàg piecewise constant functions.

(ii) The jump times (Ti)i≥1 have the same law as the jump times of the

Poisson process Nt: they can be expressed as partial sums of independent

exponential random variable with parameter λ.

(iii) The jump size (Yi)i≥1 are independent and identically distributed with

law f .

Proposition 3.2 The Poisson process itself can be seen as a compound Pois-

son process on R such that Yi := 1.
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The characteristic function of a compound Poisson process (Xt)t≥0 on R

has the following representation:

ΦXt(u) = E[eiu
∑N

k=1 Jk ]

=
∑
n≥0

E[eiu
∑N

k=1 Jk |N = n]P (N = n)

=
∑
n≥0

E[eiu
∑N

k=1 Jk ]e−λ
λn

n!

=
∑
n≥0

(∫ +∞

−∞
eiuxF (dx)

)n
e−λ

λn

n!

= exp

(
tλ

∫ +∞

−∞
(eiux − 1)F (dx)

)
(3.12)

where λ denotes the jump intensity and F the jump size distribution.

Comparing the characteristic function of the compound Poisson process with

those of the Poisson process, we see that a compound Poisson random variable

can be represented as a superposition of independent Poisson processes with

different jump sizes. The total intensity of Poisson processes with jump sizes

in the interval [x, x+ dx] is determined by the density λf(dx).

Introducing a new measure ν(A) = λf(A), we can rewrite the characteristic

function of the compound Poisson process as follows:

ΦXt(u) = E[eiuXt ] = exp

{
t

∫ +∞

−∞
(eiux − 1)ν(dx)

}
∀u ∈ R. (3.13)

As we will see in the following section, ν is called the Lévy measure of the

process (Xt)t≥0. ν is a positive measure on R but not a probability measure

since
∫
ν(dx) = λ 6= 1.

Theorem 3.3 (Compensated Compound Poisson Process) Let Xt be the

compound Poisson process defined above and β the average jump size. Then,
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the compensated compound Poisson process

X̃t = Xt − βλt (3.14)

is a martingale.

PROOF: Let 0 ≤ s ≤ t be given. Because the increment Xt −Xs is indepen-

dent of Fs and has mean βλ(t− s), we have

E[Xt − βλt|Fs] = E[Xt −Xs|Fs] + E[Xs|Fs]− βλt

= βλ(t− s) +Xs − βλt

= Xs − βλs. (3.15)

3.2 Lévy Processes: Definition and properties

Let (Ω,F ,P,Ft) be a filtered probability space which satisfies the usual con-

ditions.

Definition 3.4 (Lévy Process) A càdlàg, adapted, real valued stochastic pro-

cess L = (Lt)t≥0 with L0 = 0 almost surely, is called a Lévy process if the

following conditions are satisfied:

(i) L has independent increments, i.e. Lt−Ls is independent of Fs for any

0 ≤ s < t ≤ T .

(ii) L has stationary increments, i.e. for any s, t ≥ 0 the distribution of

Lt+s − Lt does not depend on t.

(iii) L is stochastically continuous, i.e. for every ε > 0: limh→0P(|Lt+h −

Lt| ≥ ε) = 0.
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Figure 3.4: Examples of Lévy processes. A linear drift, a Poisson process, a

Brownian motion and a Lévy jump-diffusion.

The third condition does not imply that the sample paths are continuous. It

serves to exclude processes with jumps at fixed (nonrandom) times. It means

that for given t, the probability of seeing a jump at t is zero: discontinuities

occur at random times.

The simplest Lévy process is the linear drift, a deterministic process. Brow-

nian motion is the only (non-deterministic) Lévy process with continuous sam-

ple paths. Other examples of Lévy processes are the Poisson and compound

Poisson processes. Notice that the sum of a Brownian motion and a compound

Poisson process is again a Lévy process, often called a “jump-diffusion” process

(see Figure 3.4).
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3.2.1 Infinite Divisible Distributions

There is strong interplay between Lévy processes and infinitely divisible dis-

tributions.

Definition 3.5 (Infinite divisibility) The law of a random variable X is

infinitely divisible, if for all n ∈ N there exist i.i.d. random variables X
(1/n)
1 , . . . , X

(1/n)
n

such that

X
d
= X

(1/n)
1 + . . .+X(1/n)

n . (3.16)

Equivalently, the law PX of a random variable X is infinitely divisible if for

all n ∈ N there exists another law PX(1/n) such that

PX = PX(1/n) ∗ . . . ∗ PX(1/n)︸ ︷︷ ︸
n times

(3.17)

Alternatively, we can characterize an infinitely divisible random variable

using its characteristic function.

Definition 3.6 The law of a random variable X is infinitely divisible, if for

all n ∈ N, there exists a random variable X(1/n) such that

ΦX(u) = (ΦX(1/n)(u))
n . (3.18)

Example 3.7 (Normal distribution) If X ∼ N(µ, σ2) then one can write

X =
∑n−1

k=0 Y
(1/n)
k where Y

(1/n)
k are i.i.d. with law N(µ

n
, σ

2

n
). The Normal

distribution is thus infinitely divisible.
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We can see that from the characteristic function:

ΦX(u) = exp

{
iuµ− 1

2
u2σ2

}
= exp

{
iun

µ

n
− 1

2
u2n

σ2

n

}
= exp

{
n

(
iu
µ

n
− 1

2
u2σ

2

n

)}
=

(
exp

{
iu
µ

n
− 1

2
u2σ

2

n

})n
= (ΦX(1/n)(u))

n (3.19)

Example 3.8 (Poisson distribution) Following the same procedure, we can

easily deduce that the Poisson distribution is infinitely divisible. Let X ∼

Poisson(λ), the we have:

ΦX(u) = exp
{
λ(eiu − 1)

}
= exp

{
n
λ

n
(eiu − 1)

}
=

(
exp

{
λ

n
(eiu − 1)

})n
= (ΦX(1/n)(u))

n (3.20)

where X(1/n) ∼ Poisson(λ
n
).

3.2.2 The Lévy-Khintchine Formula

The next theorem provides a complete characterization of random variables

with infinitely divisible distributions via their characteristic functions; this is

the famous Lévy-Khintchine formula.

Theorem 3.9 (Lévy-Khintchine formula) Let F be an infinitely divisible
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distribution on R. Its characteristic function can be represented as:

ΦF (u) = eψ(u) u ∈ R (3.21)

where

ψ(u) = iγu− 1

2
σ2u2 +

∫ +∞

−∞
(eiux − 1− iux1|x|≤1)ν(dx), (3.22)

where γ ∈ R, σ ∈ R+ and ν is a positive measure satisfying:∫ +1

−1

x2ν(dx) <∞
∫
|x|≥1

ν(dx) <∞

ν is called the Lévy measure of the distribution F .

The triplet (γ, σ2, ν) is called the Lévy triplet. The exponent ψ(u) =

iγu − 1
2
σ2u2 +

∫ +∞
−∞ (eiux − 1 − iux1|x|≤1)ν(dx) is called the Lévy exponent.

Moreover, γ ∈ R is called the drift term, σ ∈ R+ the Gaussian or diffusion

coefficient and ν the Lévy measure.

Now, consider a Lévy process L = (Lt)t≥0; using the fact that, for any

n ∈ N and any t > 0,

Lt = Lt/n + (L2t/n − Lt/n) + . . .+ (Lt − L(n−1)t/n) (3.23)

together with the stationary and independence of the increments, we conclude

that the random variable Lt is infinitely divisible.

Then, for every Lévy process, the following holds

E[eiuLt ] = etψ(u)

= exp

{
t

(
iγu− 1

2
σ2u2 +

∫ +∞

−∞
(eiux − 1− iux1|x|≤1)ν(dx)

)}
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where ψ(u) := ψ1(u) is the Lévy exponent of L1 := X, a random variable with

an infinitely divisible distribution.

We have seen so far, that every Lévy process can be associated with the

law of an infinitely divisible distribution. The opposite, i.e. that given any

random variable X, whose law is infinitely divisible, we can construct a Lévy

process L = (Lt)t≥1 such that L1 := X, is also true. The law of Lt is therefore

determined by the knowledge of the law of L1: the only degree of freedom

we have in specifying a Lévy process is to specify the distribution of L1 for a

single time (say, t = 1).

3.2.3 The Lévy-Itô Decomposition

Theorem 3.10 (Lévy-Itô decomposition) Consider a Lévy triplet (γ, σ2, ν)

where γ ∈ R, σ ∈ R+ and ν is a measure satisfying
∫ +1

−1
x2ν(dx) < ∞ and

inf |x|≥1 ν(dx) < ∞. Then, there exists a probability space (Ω,F ,P) on which

four independent Lévy processes exist, L(1), L(2), L(3) and L(4), where L(1) is

a constant drift, L(2) is a Brownian motion, L(3) is a compound Poisson pro-

cess and L(4) is a square integrable (pure jump) martingale with a countable

number of jumps on each finite tome interval of magnitude less than 1. Taking

L = L(1) + L(2) + L(3) + L(4), we have that there exists a probability space on

which a Lévy process L = (Lt)t≥0 with characteristic exponent

ψ(u) = iγu− 1

2
σ2u2 +

∫ +∞

−∞
(eiux − 1− iux1|x|≤1)ν(dx) (3.24)

for all u ∈ R, is defined.
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We can thus split the Lévy exponent into four parts:

ψ = ψ(1) + ψ(2) + ψ(3) + ψ(4) (3.25)

where

ψ(1)(u) = iγu, ψ(2) =
1

2
σ2u2, (3.26)

ψ(3) =

∫
|x|≥1

(eiux − 1)ν(dx), (3.27)

ψ(4) =

∫
|x|<1

(eiux − 1− iux)ν(dx), (3.28)

Therefore, we can decompose any Lévy process into four independent Lévy

processes L = L(1) + L(2) + L(3) + L(4), i.e.

Lt = γt+ σWt +

∫ t

0

∫
|x|≥1

xµL(ds, dx)

+

(∫ t

0

∫
|x|<1

xµL(ds, dx)− t
∫
|x|<1

xν(dx)

)
(3.29)

where L(1) is a constant drift, L(2) is a Brownian motion, L(3) a compound

Poisson process and L(4) is a pure jump martingale. This result is the cel-

ebrated Lévy-Itô decomposition of a Lévy process. (µL denotes the random

measure counting the jumps of L(4)).

The Lévy process L can thus be interpreted as the independent superposition

of a Brownian motion with drift and an infinite superposition of independent

(compensated) Poisson processes with various jump sizes x, ν(dx) being the

intensity of jumps of size x.
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3.2.4 The Lévy measure

Definition 3.11 (Lévy measure) Let (Xt)t≥0 be a Lévy process on R. The

measure ν on R defined by:

ν(A) = E[# {t ∈ [0, 1] : ∆Xt 6= 0,∆Xt ∈ A}], (3.30)

is called the Lévy measure of X: ν(A) is the expected number, per unit time,

of jumps whose size belongs to A.

For example, the Lévy measure of the compound Poisson process is ν(dx) =

λF (dx); from that we can deduce that the expected number of jumps, in a

time interval of length 1, is λ and the jump size is distributed according to F .

More generally, if ν is a finite measure, i.e. ν(R) =
∫

R ν(dx) = λ < ∞, then

F (dx) := ν(dx)
λ

= 1, which is a probability measure. Thus, λ is the expected

number of jumps and F (dx) the distribution of the jump size x. If ν(R) =∞,

then an infinite number of (small) jumps is expected.

3.2.5 Lévy Processes as Martingales

The notion of martingale is crucial for probability theory and mathematical

finance. Different martingales can be constructed from Lévy processes using

their independent increments property.

Proposition 3.12 Let L = (Lt)t≥0 be a Lévy process with Lévy exponent ψ

and assume E[eiuLt ] <∞, u ∈ R. The process M = (Mt)t≥0, defined as

Mt =
eiuLt

E[eiuLt ]
=

eiuLt

etψ(u)
(3.31)

is a martingale.
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Proposition 3.13 Let L = (Lt)t≥0 be a Lévy process with Lévy triplet (γ, σ2, ν)

and assume that E|Lt| <∞. L is a martingale if and only if γ = 0.

3.2.6 Path Properties

As we have seen earlier, the Lévy measure gives us the expected number of

jumps of a certain height in a time interval of length 1. Hence, if ν is an infinite

measure, then an infinite number of jumps is expected. Path properties of a

Lévy process can be read from the Lévy measure. Processes which have a

finite number of jumps on every time interval are called finite activity Lévy

processes. Otherwise, processes which have an infinite one are called infinite

activity Lévy processes.

Proposition 3.14 (Finite/Infinite activity) Let L be a Lévy process with

triplet (γ, σ2, ν).

(i) If ν(R) <∞ then almost all paths of L have a finite number of jumps on

every compact interval. In that case, the Lévy process has finite activity.

(ii) If ν(R) =∞ the almost all paths of L have an infinite number of jumps

on every compact interval. In that case, the Lévy process has infinite

activity.

Proposition 3.15 (Finite/Infinite variation) Let L be a Lévy process with

triplet (γ, σ2, ν).

(i) If σ = 0 (no Gaussian part) and
∫
|x|≤1
|x|ν(dx) < ∞ then almost all

paths of L have finite variation.
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(ii) If σ 6= 0 or
∫
|x|≤1
|x|ν(dx) = ∞ then almost all paths of L have infinite

variation.

3.3 Stochastic Calculus for Processes with Jumps

Previously, we saw that the following formula

df =

(
∂f

∂t
+ b

∂f

∂x
+ σ2 1

2

∂2f

∂x2

)
dt+

∂f

∂x
σdWt (3.32)

called Itô’s Lemma for Wiener process, was a key tool which permits to describe

the time evolution of a derivative instrument whose value Vt = f(t, St) depends

on St, when the model is a diffusion with Brownian motion. In fact, Itô’s

Lemma relates the local behavior of Vt to the behavior of St. However, this

version of Itô’s Lemma cannot be use when the Wiener process is replaced by

a process with jumps. We must, thus, define a new version of the Itô formula

for jump processes.

3.3.1 Itô Formula for Jump processes

Theorem 3.16 (Itô’s Lemma for Jump-Diffusion Processes) Let X be

a diffusion process with jumps, defined as the sum of a drift term, a Brownian

stochastic integral and a compound Poisson process:

dXt = bdt+ σdWt + dJt, (3.33)

Xt = X0 +

∫ t

0

bsds+

∫ t

0

σsdWs +
Nt∑
i=1

∆Xi, (3.34)

where bt and σt are continuous nonanticiping processes with E
[∫ T

0
σ2
t dt
]
<∞.

Then, for any C1,2 function f : [0, T ] × R → R, the process f(t,Xt) can be
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represented as:

f(t,Xt) = f(0, X0) +

∫ t

0

(
∂f

∂s
+ bs

∂f

∂x
+

1

2
σ2
s

∂2f

∂x2

)
ds+

∫ t

0

σs
∂f

∂x
dWs

+
∑

i≥1,Ti≤t

[f(XTi
+ ∆Xi)− f(XTi

)], (3.35)

or in differential notation

df =

(
∂f

∂t
+ bt

∂f

∂x
+

1

2
σ2
t

∂2f

∂x2

)
dt +

∂f

∂x
σtdWt + [f(Xt− + ∆Xt)− f(Xt−)].

(3.36)

Itô’s Lemma for jump-diffusion processes is similar to those for diffusion pro-

cesses. It’s actually the same with an expression more [f(Xt−+∆Xt)−f(Xt−)]

which characterizes the jumps.

However, in the infinite activity case, an infinite number of jumps may occur

in each interval. The number of jumps terms in the sum of the latter expression

becomes infinite, and one cannot even figure out which are the effects on the

evolution due to jumps from the one due to the Brownian component.

Theorem 3.17 (Itô’s Lemma for Lévy processes) Let (Xt)t≥0 be a Lévy

process with Lévy triplet (σ2, ν, γ) and a C1,2 function f : R→ R. The process

f(t,Xt) can be represented as:

f(t,Xt) = f(0, X0) +

∫ t

0

∂f

∂x
(s,Xs−)dXs (3.37)

+

∫ t

0

(
∂f

∂s
(s,Xs) +

1

2
σ2∂

2f

∂x2
(s,Xs)

)
ds

+
∑

0≤s<t
∆Xs 6=0

[f(s,Xs− + ∆Xs)− f(s,Xs−)−∆Xs
∂f

∂x
(s,Xs−)]
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or in differential notation

df =

(
∂f

∂t
+

1

2
σ2∂

2f

∂x2

)
dt +

∂f

∂x
dXt + [f(Xt−+∆Xt)−f(Xt−)−∆Xt

∂f

∂x
(Xt−)]

(3.38)

3.3.2 Equivalence of Measures for Lévy Processes

As the Girsanov theorem in a diffusion contest, we present a method to convert

the discounted underlying price e−rtSt into a martingale. We are thus looking

for a measure Q such that

EQ[ŜT |Ft] = Ŝt, where Ŝt = e−rtSt (3.39)

There exists a method called the Esscher transform which permits to obtain

the equivalent martingale measure Q for a Lévy process by an exponential

transform. However, this method remains a bit complex and the measure ob-

tained doesn’t seem to be the kind of measure chosen by the market. Another

way to obtain an equivalent martingale measure Q is by mean-correcting the

exponential of a Lévy process. This method proposes to change the drift (or

to add a drift if the process doesn’t have a drift part, see remark below) in

order to make the discounted stock price become a martingale.

Remark 3.18 For processes without drift part (as the VG or NIG, see next

chapter), an additional drift p ∈ R can be introduced without altering the

infinite divisibility property nor the self-decomposability of the distribution.

The new distribution has a characteristic function Φ̂ in terms of the original

characteristic function Φ

Φ̂(u) = Φ(u)eiup (3.40)
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The drift parameter just translate the distribution by the value p. Thus, a term

pt is added to the process Lt

L̂t = Lt + pt (3.41)

Finally, the first parameter of the Lévy triplet is the only changed: (γ+p, σ2, ν).

Let’s explain the mean-correcting martingale measure method.

First of all, we set S0 = 1 for simplicity of calculation. Then, strike price K is

given in function of S0 (for example, a strike price of 0.9 means 90% of S0; if

S0 = 100, the strike price is K = 90).

We know that the characteristic function of a Lévy process is of the form eψ(u)

where ψ(u) is called the characteristic exponent.

We know that for a Lévy process, the characteristic exponent is of the form

ψ(u) = t

(
iγu− 1

2
σ2u2 +

∫ +∞

−∞
(eiux − 1− iux1|x|≤1)ν(dx)

)
(3.42)

We can thus divide the characteristic exponent into two parts: a drift part

and another no-drift part

ψ(u) = µ(u) + ϕ(u) (3.43)

where

ϕ(u) = t

(
−1

2
σ2u2 +

∫ +∞

−∞
(eiux − 1− iux1|x|≤1)ν(dx)

)
(3.44)

and

µ(u) = iγut (3.45)

(If the process doesn’t have a drift part, just set µ(u) = 0; moreover, the

Gaussian part −1
2
σ2u2t or the jump part t

∫ +∞
−∞ (eiux− 1− iux1|x|≤1)ν(dx) can
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also be 0).

It can be shown that under the risk-neutral measure, the (new) drift part

µRN(u) is given by

µRN(u) = i

(
r − ϕ(−i)

t

)
ut (3.46)

where r is the risk-free interest rate and ∆ = r − ϕ(−i)
t

is the drift parameter

under the risk-neutral measure.

Then, the risk-neutral characteristic function is given by

ΦRN(u) = eϕ(u)eµ
RN (u)

= eϕ(u)+µRN (u)

= eϕ(u)+i∆ut (3.47)

Therefore, under the risk-neutral measure, the characteristic exponent is

of the form

ϕ(u) = t

{(
r − ϕ(−i)

t

)
iu− 1

2
σ2u2 +

∫ +∞

−∞
(eiux − 1− iux1|x|≤1)ν(dx)

}
(3.48)

where, as seen before, the Gaussian part−1
2
σ2u2t or the jump part t

∫ +∞
−∞ (eiux−

1− iux1|x|≤1)ν(dx) can be 0.

Example 3.19 (Black-Scholes) The characteristic function of the Black-

Scholes model under the measure P is given by:

Φ(u) = exp

{
t

(
iγu− 1

2
σ2u2

)}
(3.49)

We can then split the characteristic exponent into two parts, a drift part µ(u) =

iγut and a no-drift part ϕ(u) = −1
2
σ2u2t.
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Therefore, under the risk-neutral measure, the drift part can be written as

µRN(u) = i

(
r − ϕ(−i)

t

)
ut = i

(
r − 1

2
σ2

)
ut (3.50)

So, the risk-neutral characteristic function of the Black-Scholes model is given

by

ΦRN(u) = exp

{
−1

2
σ2u2t

}
exp

{
i

(
r − 1

2
σ2

)
ut

}
= exp

{
t

(
i∆u− 1

2
σ2u2

)}
(3.51)

where ∆ is the risk-neutral drift parameter

∆ = r − 1

2
σ2 (3.52)

In the next chapter, thanks to this method, we will derive the risk-neutral

characteristic functions for various Lévy processes.



Chapter 4

Lévy Processes for Financial

Modeling

Lévy processes useful in finance fall into two categories. In the first cate-

gory, called jump-diffusion models, the “normal” evolution of prices is given

by a diffusion process, punctuated by jumps at random intervals. Hence, the

jumps represent rare events. Such a model can be modeled by a Gaussian part

(Brownian motion) plus a jump part, which is compound Poisson process with

finitely many jumps in every time interval and distribution F of jump size. On

figure 4.1, we can clearly see the jumps which characterize the jump-diffusion

model. Such models are easy to simulate and lead to good fit of the volatility

smile in the long run. However, they rarely lead to closed-form densities.

The second category consists of models with infinite number of jumps in ev-

ery time interval, called infinite activity models. In these models, one does

not need to introduce a Brownian component since the dynamics of jumps are

already rich enough to generate nontrivial small time behavior; these models
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are infinite activity pure jump models. However, many models of this type can

be constructed by Brownian subordination. We could also consider pure jump

processes of finite activity without diffusion component but these models do

not lead to a realistic description of price dynamics.

All the models we are about to discuss belong to a family of Lévy processes

called “exponential Lévy processes”. In this class of Lévy processes, the risk-

neutral dynamics of the underlying asset is given by

St = S0 exp(Lt) (4.1)

where Lt is a Lévy process under the equivalent martingale measure Q with

characteristic triplet (γ, σ2, ν). The log returns log(St+s/St) of such a model

follow the distribution of increments of length s of the Lévy process Lt. We

choose L0 = 0 to have exp(L0) = 1 and thus S0 = S0 exp(L0) = S0. If we set

S0 = 1, the process can be resumed as St = exp(Lt).

The absence of arbitrage then imposes that Ŝt = Ste
−rt = e−rteLt be a mar-

tingale.

As seen in section 3.3.2, we are able to find an equivalent martingale measure

under which the discounted stock price Ŝt is a martingale (i.e. we are able to

derive the risk-neutral characteristic function for the discounted Lévy process).

Different exponential Lévy models proposed in the financial modeling litera-

ture simply correspond to different choices for the Lévy measure ν (and for

the Gaussian part σ if present).

The Black-Scholes model is thus nothing more than an exponential Lévy model
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where the Lévy process Lt is a Brownian motion with drift γ = r − 1
2
σ2

Lt = γt+ σWt

= (r − 1

2
σ2)t+ σWt (4.2)

then,

St = S0 exp(Lt)

= S0 exp

(
(r − 1

2
σ2)t+ σWt

)
(4.3)

But as Lti = Lti−1
+ γ(ti − ti−1) + σ

√
ti − ti−1N(0, 1), we can rewrite the

last equation as

Sti = S0 exp(Lti)

= S0 exp

{
Lti−1

+ (r − 1

2
σ2)(ti − ti−1) + σ

√
ti − ti−1N(0, 1)

}
= S0 exp(Lti−1

) exp

{
(r − 1

2
σ2)(ti − ti−1) + σ

√
ti − ti−1N(0, 1)

}
Sti = Sti−1

exp

{
(r − 1

2
σ2)(ti − ti−1) + σ

√
ti − ti−1N(0, 1)

}
(4.4)

Before going ahead, we need to define a Lévy process called subordinator

which has an important role in the construction of other Lévy processes.

Definition 4.1 (Subordinator) A subordinator is an increasing (in t) Lévy

process. Equivalently, for S to be a subordinator, the triplet must satisfy

ν(−∞, 0) = 0, c = 0,
∫

(0,1)
xν(dx) <∞ and γ = b+

∫
(0,1)

xν(dx) > 0.

This class of Lévy processes is called subordinator because they can be used

as time changes for other Lévy processes. They are very important ingredients
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Figure 4.1: Paths of the Black-Scholes model (in blue) and the Merton jump-

diffusion model (in red). We used r = 5%, σ = 20%, λ = 5, α = −0.1 and

δ = 0.4

for building Lévy-based models in finance. The Poisson, the Gamma and the

inverse Gaussian process are examples of subordinator.

4.1 Jump-Diffusion Models

Assume that the process L = (Lt)t≥0 is a Lévy jump-diffusion, i.e. a Brownian

motion plus a compensated compound Poisson process. It can be described by

Lt = γt+ σWt +
Nt∑
i=1

Yi (4.5)

where γ ∈ R, σ ∈ R+, W = (Wt)t≥0 is a standard Brownian motion, N =

(Nt)t≥0 is a Poisson process with parameter λ (i.e. E[Nt] = λt) and Y = (Yt)t≥1

is an i.i.d. sequence of random variables with probability distribution F and
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E[Y ] = k < ∞; F describes the distribution of jump size. All sources of

randomness are mutually independent.

The characteristic function of Lt is

E[eiuLt ] = E

[
exp

{
iu

(
γt+ σWt +

Nt∑
i=1

Yi

)}]
(4.6)

= exp{iuγt} E

[
exp{iuσWt} exp

{
iu

Nt∑
i=1

Yi

}]
since all the sources of randomness are independent, we get

= exp{iuγt} E {exp(iuσWt)} E

[
exp

{
iu

Nt∑
i=1

Yi

}]
taking into account that

E[eiuWt ] = e−
1
2
σ2u2t, Wt ∼ Normal(0, σ2t) (4.7)

E[eiu
∑Nt

i=1 Yi ] = eλt(E[eiuY −1]), Nt ∼ Poisson(λt) (4.8)

we get

= exp{iuγt} exp

{
−1

2
u2σ2t

}
exp

{
λt
(
E
[
eiuY − 1

])}
(4.9)

and because the distribution of Y is F we have

= exp{iuγt} exp

{
−1

2
u2σ2t

}
exp

{
λt

∫ +∞

−∞
(eiux − 1)F (dx)

}
(4.10)

Now, since t is a common factor, we write the above equation as

E[eiuLt ] = exp

{
t

(
iuγ − 1

2
u2σ2 +

∫ +∞

−∞
(eiux − 1)λF (dx)

)}
(4.11)

Since the characteristic function of a random variable determines its distribu-

tion, we have a “characterization” of the distribution of the random variables

underlying the Lévy jump-diffusion.
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4.1.1 Merton Model

Merton (1976) was the first to use a discontinuous price process to model asset

returns. In the Merton model, jumps in the log-price Xt are assumed to have

a Gaussian distribution. The canonical decomposition of the driving process

is

Xt = µt+ σWt +
Nt∑
k=1

Yi (4.12)

where Yi ∼ N(α, δ2). Hence, the distribution of the jump size has the density

F (x) =
1

δ
√

2π
exp

[
−(x− α)2

2δ2

]
(4.13)

and the Lévy density

ν(x) = λF =
λ

δ
√

2π
exp

[
−(x− α)2

2δ2

]
(4.14)

The Merton model has thus 4 parameters (excluding the drift µ): σ the diffu-

sion volatility, λ the jump intensity, α the mean jump size and δ the standard

deviation of jump size.

The characteristic function of the model is given by

E[eiuXt ] = exp

{
t

(
iµu− 1

2
σ2u2 + λ(eiαu−

1
2
δ2u2 − 1)

)}
(4.15)

and the Lévy triplet by (µ, σ2, λF ).

The density of Xt is not none in closed form, but it admits a series expansion

pt(x) = e−λt
∞∑
k=0

(λt)k exp
{
− (x−µt−αk)2

2(σ2t+δ2k)

}
k!
√

2π(σ2t+ δ2k)
(4.16)

and the first two moments are

E[Xt] = t(µ+ λδ) Var[Xt] = t(σ2 + λα2 + λδ2)
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4.1.2 Kou Model

Kou (2002) proposed a jump-diffusion similar Merton’s, where the jump size

is double-exponentially distributed. Therefore, the canonical decomposition of

the driving process of the Kou model is

Xt = µt+ σWt +
Nt∑
k=1

Yi (4.17)

where Yi ∼ DbExpo(p, η1, η2). Hence, the distribution of the jump size has the

density

F (x) = pη1e
−η1x1x<0 + (1− p)η2e

−η2|x|1x>0 (4.18)

and the Lévy density

ν(x) = λF = pλη1e
−η1x1x<0 + (1− p)λη2e

−η2|x|1x>0 (4.19)

The Kou model has thus 5 parameters (excluding the drift µ): σ the diffusion

volatility, λ the jump intensity, p the probability of an upward jump and η1

and η2 govern the decay of the tails for the distribution of positive and negative

jump sizes.

The characteristic function of the model is given by

E[eiuXt ] = exp

{
t

(
iµu− 1

2
σ2u2 + iuλ

[
p

η1 − iu
− 1− p
η2 + iu

])}
(4.20)

and the Lévy triplet by (µ, σ2, λF ) The density of Xt is not known in closed

form, while the first two moments are

E[Xt] = t

(
µ+

λp

η1

− λ(1− p)
η2

)
Var[Xt] = t

(
σ2 +

λp

η2
1

− λ(1− p)
η2

2

)
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4.2 Infinite Activity Models

During the last decade, a vast amount of papers has been written about Lévy

processes and infinite activity models have clearly represented the major area

of research. Infinite activity models form a rich class of processes and the

study of this entire family is far beyond the scope of this thesis. We will

just present two models: the Variance Gamma (VG) model and the Normal

Inverse Gaussian (NIG) model. The VG model was introduced in 1987 by

Madan and Seneta [71] as a model for stock returns. They considered the

symmetric case with θ = 0 (see also the articles from Madan and Seneta [72]

and from Madan and Milne [70]). The general case has been studied in 1998

in the paper from Madan, Carr and Chang [69]. The NIG distribution was

introduced by Barndorff-Nielsen in 1995 [10]. See also [11], [12] and [84] for

further development.

These two models are famous for their easy simulation. Indeed, they can be

simulated through Brownian subordination. Subordinating Brownian motion

with drift µ by the (subordinator) process S, we obtain a new Lévy process

Lt = µSt + σWSt . This process is a Brownian motion if observed on a new

time scale, that is, the stochastic time scale given by St (we have replaced

the deterministic time argument t by a random time St. This scale has the

financial interpretation of business time [52], that is, the integrated rate of

information arrival. This interpretation makes models based on subordinated

Brownian motion easier to understand that general Lévy models.

The subordinating processes under VG and NIG are respectively Gamma pro-

cess and Inverse Gaussian process.
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4.2.1 Normal Inverse Gaussian

We first present the subordinating Inverse Gaussian process and then talk

about the Normal Inverse Gaussian process.

The Inverse Gaussian Process

The inverse Gaussian distribution with parameters a, b > 0 has density

fIG(x) =
aeab√

2π
x−3/2 exp(−1

2
(a2x−1 + b2x)) x > 0. (4.21)

This is the density of the first passage time to level a of a Brownian motion

with drift b. It has mean a/b and variance a/b3. The characteristic function

of the Inverse-Gaussian process is given by

ΦIG(u; a, b) = exp
{
−a(
√
−2iu+ b2 − b)

}
(4.22)

The inverse Gaussian distribution is infinitely divisible: if X1 and X2 are

independent and have this density with parameters (a1, b) and (a2, b), then

it is clear from the first passage time interpretation that X1 + X2 has this

density with parameters (a1 + a2, b). It follows that we can define the IG

process X(IG) = {X(IG)
t , t ≥ 0}, with parameters a, b > 0, as the process which

starts at zero and has independent and stationary increments such that

E[eiuX
(IG)
t ] = ΦIG(u; at, b)

= exp
{
−at(

√
−2iu+ b2 − b)

}
(4.23)

An IG random variable takes only positive values so an IG process is non-

decreasing. This makes it unsuitable as a model of (the logarithm of) a risky

asset price but perfect as a subordinator.
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The IG distribution satisfies the following scaling property. IF X is IG(a, b),

then, for a positive c

cX ∼ IG(a
√
c,

b√
c
) (4.24)

The NIG Process

The Normal Inverse Gaussian (NIG) distribution has a characteristic function

given by

Φt(u, α, β, δ) = exp
{
−δ
(√

α2 − (β + iu)2 −
√
α2 − β2

)}
(4.25)

This characteristic function is also infinitely divisible, so we can define the NIG

process X(NIG) = {X(NIG)
t , t ≥ 0} with 3 parameters α : α > 0, β : −α < β <

α and δ : δ > 0, with X
(NIG)
0 = 0 stationary and independent NIG distributed

increments. The characteristic function of the NIG process is therefore

E[eiuX
(NIG)
t ] = Φ

(NIG)
t (u;α, β, δt)

= exp
{
−δt

(√
α2 − (β + iu)2 −

√
α2 − β2

)}
(4.26)

The NIG process is a Lévy process without Gaussian part. It can can be called

a pure jump process. Its path is rich enough (has an infinitely number of small

jumps) to not need to introduce a Brownian part.

For its simulation (or for a better understanding of its path), we can relate

the NIG process to an Inverse Gaussian time-changed Brownian motion, that

is we can see it has a Brownian motion subordinated by an Inverse Gaussian

process.

Let Wt be a standard Brownian motion and let It be an IG process with

parameters a = 1 and b = δ
√
α2 − β2, then the stochastic process

Xt = βδ2It + δWIt (4.27)
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is an NIG process with parameters α, β and δ.

The first two moments of the NIG process are

E[Xt] = δtβ
√
α2 − β2 Var[Xt] = α2δt(α2 − β2)−3/2

4.2.2 Variance Gamma

We first present the subordinating Gamma process and then talk about the

Variance Gamma process.

The Gamma Process

The Gamma distribution with parameters a, b > 0 has density

fG(x) =
ba

Γ(a)
xa−1e−xb x > 0 (4.28)

The characteristic function is given by

ΦGamma(u; a, b) =

(
1− iu

b

)−a
(4.29)

The Gamma distribution has mean a/b and variance a/b2.

If Y1, . . . , Yn are independent with distribution Gamma(a/n, b), then Y1 + . . .+

Yn has distribution Gamma(a, b); thus, Gamma distributions are infinitely di-

visible. For each choice of the parameters a and b there is a Lévy process (called

a Gamma process) such that X(1) has distribution Gamma(a, b). Then, the

Gamma process X(Gamma) = {X(Gamma)
t , t ≥ 0} is defined as the stochastic

process which starts at zero and has stationary and independent Gamma dis-

tributed increments, X
(Gamma)
t follows a Gamma(at, b) distribution and as a
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characteristic function given by

E[eiuX
(Gamma)
t ] = Φ

(Gamma)
t (u; at, b)

=

(
1− iu

b

)−at
(4.30)

A Gamma random variable takes only positive values so a Gamma process is

non-decreasing. This makes it unsuitable as a model of (the logarithm of) a

risky asset price but perfect as a subordinator.

The Gamma distribution satisfies the following scaling property. If X is

Gamma(a, b), then for a positive c

cX ∼ Gamma(a,
b

c
) (4.31)

The VG Process

The characteristic function of the VG(σ, ν, θ) law is given by

Φ(u;σ, ν, θ) =

(
1− iuθν +

1

2
σ2νu2

)−1/ν

(4.32)

The distribution is infinitely divisible and we can define a VG process X
(V G)
t

as the process which starts at zero, has independent and stationary increments

and for which the increments X
(V G)
s+t − X

(V G)
s follows a V G(σ

√
t, ν/t, tθ) law

over the time interval [s, t+ s].

The characteristic function of the VG process is thus

E[eiuX
(V G)
t ] = ΦV G(u;σ

√
t, ν/t, tθ)

= (ΦV G(u;σ, ν, θ))t

=

(
1− iuθν +

1

2
σ2νu2

)−t/ν
(4.33)
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Madan and Seneta [72] showed that a Variance Gamma process can be

seen as a Lévy process Lt with Lt = G
(1)
t − G

(2)
t , where G(1) and G(2) are

independent Gamma processes representing the up and down moves of Lt.

We can rewrite the characteristic function as

ΦV G(u;C,G,M) =

(
GM

GM + (M −G)iu+ u2

)C
(4.34)

where

C = 1/ν > 0 (4.35)

G =

(√
1

4
θ2ν2 +

1

2
σ2ν − 1

2
θν

)−1

> 0 (4.36)

M =

(√
1

4
θ2ν2 +

1

2
σ2ν +

1

2
θν

)−1

> 0 (4.37)

with this parameterization, we have thus

L
(V G)
t = G

(1)
t −G

(2)
t (4.38)

where G
(1)
t is a Gamma process with parameters a = C and b = M , whereas

G
(2)
t is an independent Gamma process with parameters a = C and b = G.

We can refer to VG(C,G,M).

If G
(1)
1 and G

(2)
1 have the same shape and scale parameters, then Lt admits

an alternative representation as WGt where W is a standard Brownian motion

and G is a Gamma process. In other words, Lt can be viewed as the result of

applying a random time-change to an ordinary Brownian motion.

More precisely, let Gt be a Gamma process with parameters a = 1/ν > 0 and

b = 1/ν > 0. Let Wt denote a standard Brownian motion, let σ > 0 and

θ ∈ R; then the VG process X
(V G)
t , with parameters σ > 0, ν > 0 and θ, can
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alternatively be defined as

X
(V G)
t = θGt + σWGt (4.39)

If θ = 0, then G = M and the distribution is symmetric (the parameters θ

controls the skewness). The parameters ν = 1/C controls the kurtosis.

The first two moments of the VG process are

E[Xt] = θt Var[Xt] = σ2t+ θ2νt (4.40)

or with the CGM notations

E[Xt] =
Ct(G−M)

MG
Var[Xt] =

Ct(G2 +M2)

(MG)2
(4.41)

Madan et al. [69] considered the more general case WGt where W now has

the drift parameter µ and variance parameter σ2. They restricted the shape

parameter of G1 to be the reciprocal of its scale parameter b (so that E[Gt] = t)

and show that this more general Variance Gamma process can still be repre-

sented as the difference G
(1)
t −G

(2)
t of two independent Gamma processes. The

shape and scale parameters of G
(1)
1 (a1, b2) and G

(2)
1 (a2, b2) should be chosen to

satisfy

a1 = 1/b

a2 = 1/b

b1b2 = (σ2b)/2

b1 − b2 = µb
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4.3 Simulation

In this section, we describe the techniques used to simulate the last four pro-

cesses. The code written in Matlab to realize these simulations can be found

in the appendix at the end of this thesis and downloadable at the following

website: http://ddeville.110mb.com/thesis/

As random variates generators (for Normal, Poisson, Inverse Gaussian and

Gamma random numbers) are the basis of our simulations, we have to be sure

of their goodness. Based upon the fact that

1

N

N∑
i=1

Xi → E[X]
1

N

N∑
i=1

(X − E[X])2 → Var[X] (4.42)

we decide to calculate the empirical mean and variance for N = 10, 000 and

check out how close they are to the theoretical ones. A deeper coverage of the

subject can be found in the book by Devroye [40].

4.3.1 Jump Diffusion Processes

As many processes have a Brownian part (or a subordinated Brownian part),

we need an efficient algorithm to generate Normal random variates. The most

famous algorithm to generate Normal random variates is the Bow-Muller gen-

erator. It generates two independent Normal random variates.

Algorithm 4.2 (Box-Muller generator of Normal variates)

Generate two uniform [0, 1] random variates U , V .

Set E ← −log(U) (exponentially distributed)

Set A← cos(2πV )
√

2E
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Empirical mean Theoretical mean

+2.0015 +2.0000

Empirical variance Theoretical variance

+3.0014 +3.0000

Table 4.1: Normal(2,3) with Box-Muller Normal variates generator.

Set B ← sin(2πV )
√

2E

RETURN(A,B)

Given its goodness and quickness we will use the Random Normal variates

generator randn in Matlab

Poisson Process

To generate Jump-Diffusion processes, we need to add a jump part to a Brow-

nian motion with drift. This jump part is represented by random jump times

given by a Poisson process.

We present then three generators of Poisson random variates with a compara-

ble goodness.

Algorithm 4.3 (Poisson generator: exponential inter-arrival times)

Set X ← 0

Set Sum← 0

WHILE true DO

Generate an exponential random variate E.

Sum← Sum+ E

IF Sum< λ

THEN X ← X + 1
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ELSE RETURN X

Algorithm 4.4 (Poisson generator: multiplication of uniform r.v)

Set X ← 0

Set Prod← 1

WHILE true DO

Generate a uniform random variate U .

Prod← ProdU

IF Prod> e−λ

THEN X ← X + 1

ELSE RETURN X

Algorithm 4.5 (Poisson generator: inversion by sequential search)

Set X ← 0

Set Sum← e−λ

Set Prod← e−λ

Generate a uniform random variate U .

WHILE U > Sum DO

X ← X + 1

Prod← 1
X
Prod

Sum← Sum+ Prod

THEN X ← X + 1

RETURN X

We choose to use the first generator even though the three have the same

characteristics (just the second has Variance a little over-estimated).
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Empirical mean Theoretical mean

+9.9666 +10.0000

+10.0235 +10.0000

+10.0860 +10.0000

Empirical variance Theoretical variance

+10.0436 +10.0000

+10.1230 +10.0000

+9.9712 +10.0000

Table 4.2: Poisson(10), First line: exponential inter-arrival times, Second line:

multiplication of uniform r.v., Third line: inversion by sequential search.

Then we present an algorithm to generate a sample path of a Poisson

process. The Poisson process is a no-decreasing process of increments 1 and

exponential spacings between increments.

Algorithm 4.6 (Sample path of a Poisson process) Simulation of the pro-

cess (X(t1), . . . , X(tn)) for fixed times t1, . . . , tn): a discretized trajectory of the

Poisson process with parameter λ.

• Simulate n i.i.d. Poisson random variables It with parameter hλ (h is

the discretization step)

The discrete trajectory of the process is given by

Xti = Xti−1
+ Iti

The Poisson process is not a martingale. Its counterpart, the compensated

Poisson process, is.
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Compensated Poisson Process

Algorithm 4.7 (Sample path of a compensated Poisson process) Simulation

of the process (X(t1), . . . , X(tn)) for fixed times t1, . . . , tn): a discretized tra-

jectory of the compensated Poisson process with parameter λ.

• Simulate n i.i.d. Poisson random variables It with parameter hλ (h is

the discretization step)

The discrete trajectory of the process is given by

Xti = Xti−1
+ Iti − λ(ti − ti−1)

The compound Poisson process is a Poisson process which increments are

not of size 1 anymore but given by a distribution F .

Compound Poisson Process

Algorithm 4.8 (Sample path of a compound Poisson process) Simulation

of (X(t1), . . . , X(tn)) for fixed times t1, . . . , tn): a discretized trajectory of the

compound Poisson process with parameter λ.

• Simulate a random variable N from Poisson distribution with parameter

λT (N gives the total number of jumps on the interval [0, T ]).

• Simulate N i.i.d. random variables, Ui, uniformly distributed on the

interval [0, T ] (These variables correspond to the jump times).

• Simulate jump sizes: N independent r.v. Yi with law F .

The discrete trajectory of the process is given by

Xt =
N∑
i=1

1Ui<tYi

Sample paths of the various Poisson processes can be seen in the last chap-

ter.
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Jump Diffusion Processes

A Jump-Diffusion process is nothing more than a Brownian motion with drift

with in addition a jump part given by a compound Poisson process. We

first give an algorithm to simulate a general Jump-Diffusion process with

distribution of jumps F . Then, we will talk about the two most important

Jump-Diffusion models: Merton Normal Jump-Diffusion and Kou Double-

Exponential Jump-Diffusion. These two models differ by the distribution of

the increments of the jump part. Merton assumes jump size is Gaussian while

Kou proposes a Double-Exponential distribution for the jump size.

Algorithm 4.9 (Sample path of a Jump-Diffusion process)

Simulation of (X(t1), . . . , X(tn)) for n fixed times t1, . . . , tn):

Simulate n i.i.d. N(0, 1) random variables

Generate N ∼ Poisson(λ(ti+1 − ti))
IF Ni= 0

Mi= 0

ELSE Generate Yi from its distribution

Set Mi = Yi

The discretized trajectory of the process is given by

Xt = γt+ σWt +M

In the Merton Normal Jump-Diffusion case, the Yi have a Normal distri-

bution (a, b). We can thus write M as

M = aN + b
√
NZ

where Z is a N(0, 1) Normal variable.

In the Kou Double Exponential Jump Diffusion process, Yi has a Double Ex-

ponential distribution. We can see it like that: in the Kou model, |Yi| has a
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Gamma distribution (in fact Exponential) and the sign of Yi is positive with

probability p, negative with probability 1− p. In this case, conditional on the

Poisson random variable N taking the value n, the number of Yi with positive

sign has a Binomial distribution with parameters n and p. We can thus rewrite

M as

K ∼ Binomial(N, p)

R1 ∼ Gamma(Kη1, η2)

R2 ∼ Gamma((N −K)η1, η2)

M = R1 −R2

4.3.2 Normal Inverse Gaussian Process

First of all, we need an algorithm to generate Inverse Gaussian random vari-

ates. Then, we will be able to construct a path of a Normal Inverse Gaussian

process by Brownian subordination.

Inverse Gaussian Process

Algorithm 4.10 (IG generator of Michael, Schucany and Haas)

Generate a normal random variate N .

Set Y ← N2

Set X1 ← (a/b) + (Y/2b2)−
√

4abY + Y 2/(2b2)

Generate a uniform [0, 1] random variate U .

IF U ≤ a/(a+X1b)

THEN RETURN X ← X1

ELSE RETURN X ← a2/(b2X1)
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Empirical mean Theoretical mean

+2.9979 +3.0000

Empirical variance Theoretical variance

+0.7592 +0.7500

Table 4.3: IG(6,2) with generator of Michael, Schucany and Haas

The IG random variates generator we have proposed seems to give a great

approximation and we can use it without any problem.

We can now construct an IG process.

Algorithm 4.11 (Sample path of an IG process) Simulation of the pro-

cess (X(t1), . . . , X(tn)) for fixed times t1, . . . , tn): a discretized trajectory of

the IG process with parameters a, b.

• Simulate n i.i.d. IG random variables It with parameter (ah, b) (h is the

discretization step)

The discrete trajectory of the process is given by

Xti = Xti−1
+ Iti

Normal Inverse Gaussian Process

We can construct a NIG process by Brownian subordination, i.e. we construct

an IG process and set is as time parameter for the Brownian motion. The

algorithm to construct the simulation is the following.

Algorithm 4.12 (NIG as a subordinated Brownian Motion) Simulation

of (X(t1), . . . , X(tn)) for fixed times t1, . . . , tn: a discretized trajectory of the

NIG process with parameters α, β, δ.
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Figure 4.2: An Inverse Gaussian process with parameters a = 6 and b = 2

Set a = 1, b = δ
√
α2 − β2

Simulate n IG variables IGt with parameters (ah, b) (h is the discretization

step)

Simulate n i.i.d. N(0, 1) random variables

Simulate the process as

X
(NIG)
t = βδ2IGt + δWIGt

where W is the Brownian Motion
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Figure 4.3: A Normal Inverse Gaussian process with parameters α = 40,

β = −8 and δ = 1

4.3.3 Variance Gamma Process

Gamma Process

To simulate a Gamma process, we first need to simulate Gamma numbers from

a Gamma(a, b) distribution. First of all, as we saw in the last section

cX ∼ Gamma(a,
b

c
)

Therefore, we just need an algorithm to simulate Gamma(a, 1) numbers. We

can then obtain Gamma(a, b) by dividing Gamma(a, 1) numbers by b. There

are no algorithms to simulate Gamma random numbers which are uniformly

fast for all a. For most algorithm, we have uniform speed on some interval

[a∗,∞) where a∗ is near to 1. For small values of a (i.e. a < 1), the algorithm

are often not valid, due to the fact that the Gamma density has an infinite
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peak at 0 when a < 1. So, we cannot use the same method to simulate Gamma

numbers with a ≤ 1 and a ≥ 1. We need two algorithms.

We first discuss algorithms for a ≥ 1.

A famous algorithm to generate Gamma variables when a ≥ 1 is the Best’s

generator.

Algorithm 4.13 (Best’s generator of Gamma variables)

Set b← a, d← 3a− 3/4

REPEAT

Generate i.i.d. uniform [0, 1] random variables U , V

Set W ← U(1− U)

Set Y ←
√

d
W

(U − 1
2
)

Set X ← c+ Y

IF X < 0 go to REPEAT

Set Z ← 64W 3V 3

UNTIL log(Z) ≤ 2(c log(X
c
)− Y )

RETURN X

A most recent algorithm to generate Gamma random variates when a ≥ 1

is the Fishman’s generator. It is based upon Cheng and Feast’s generator.

Algorithm 4.14 (Fishman’s Algorithm GKM1 - Cheng and Feast)

Set c← 1− a, d← (a− (1/6a)))/c, m← 2/c, f ← m+ 2

REPEAT

Generate i.i.d. uniform [0, 1] random variables U1, U2

Set V ← (dU2)/U1

IF mU1 − f + V + ( 1
V

) ≤ 0, accept
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Empirical mean Theoretical mean

+1.5224 +1.5000

+1.5074 +1.5000

Empirical variance Theoretical variance

+0.9047 +0.7500

+0.7591 +0.7500

Table 4.4: Gamma(3,2), First line: Best’s generator, second line: Fishman’s

algorithm.

ELSEIF m log(U1)− log(V ) + V − 1 ≤ 0, accept

UNTIL accept

RETURN Z ← cV

Best’s generator, even though gives a good approximation of the mean

seems to be quite bad to approximate the real variance. Therefore, we choose

to use Fishman’s generator which fits perfectly to the real data.

In the case where a ≤ 1, we have chosen to present 3 generators:

Algorithm 4.15 (Johnk’s generator of Gamma variables)

REPEAT

Generate i.i.d. uniform [0, 1] random variables U , V

Set X ← U1/a, Y ← V 1/(1−a)

UNTIL X + Y ≤ 1

Generate an exponential random variable E

RETURN (XE)/(X + Y )

Algorithm 4.16 (Berman’s generator of Gamma variables)
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REPEAT

Generate i.i.d. uniform [0, 1] random variables U1, V1

Set X ← U
1/a
1 , Y ← V

1/(1−a)
1

UNTIL X + Y ≤ 1

Generate i.i.d. uniform [0, 1] random variables U2, V2

RETURN y ← −X log(U2V2)

Algorithm 4.17 (Ahrens-Dieter’s Gamma generator)

Set e← exp(1)

Set m← (a+ e)/e

REPEAT

Generate i.i.d. uniform [0, 1] random variables U1, U2

Set Y ← mU1

If Y ≤ 1

Z ← Y 1/a

If U2 < exp(−Z), accept

Else Z ← − log(m−Y
a

)

If U2 ≤ Za−1, accept

UNTIL accept

RETURN Z

Johnk and Berman’s algorithm seem to give very bad generation of Gamma

random variates; both the mean and variance are far from the real data. There-

fore, we choose the third algorithm, Ahrens-Dieter’s Gamma generator, which

fits very well the real data.

We can now generate a sample path of a Gamma process.
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Empirical mean Theoretical mean

+0.2318 +0.1500

+0.5869 +0.1500

+0.1495 +0.1500

Empirical variance Theoretical variance

+0.0817 +0.0750

+0.4732 +0.0750

+0.0746 +0.0750

Table 4.5: Gamma(0.3,2), First line: Johnk’s generator, second line: Berman’s

generator, third line: Ahrens-Dieter’s generator.

Algorithm 4.18 (Sample path of a Gamma process) Simulation of the

process (X(t1), . . . , X(tn)) for fixed times t1, . . . , tn): a discretized trajectory of

the VG process with parameters a, b.

• Simulate n i.i.d. Gamma random variables Gt with parameter (ah, b) (h

is the discretization step)

The discrete trajectory of the process is given by

Xti = Xti−1
+Gti

Variance Gamma Process

There are two methods to simulate a Variance Gamma: by Brownian subor-

dination (as a Time-Changed Brownian Motion) or as the difference of two

Gamma processes. Below, we present to algorithm to simulate a VG process

with each one of these two methods.

Algorithm 4.19 (Variance Gamma as a subordinated Brownian Motion)

Simulation of (X(t1), . . . , X(tn)) for fixed times t1, . . . , tn: a discretized trajec-

tory of the VG process with parameters σ, ν, θ.



4.3 Simulation 91

Figure 4.4: A Gamma process with parameters a = 10 and b = 25

Set a = 1/ν, b = 1/ν

Simulate n Gamma variables Gt with parameters (ah, b) (h is the discretiza-

tion step)

Simulate n i.i.d. N(0, 1) random variables

Simulate the process as

X
(V G)
t = θGt + σWGt

where W is the Brownian Motion

Algorithm 4.20 (Variance Gamma as the difference of two Gamma processes)

Simulation of (X(t1), . . . , X(tn)) for fixed times t1, . . . , tn: a discretized trajec-

tory of the VG process with parameters C,G,M .

Set a1 = C, b1 = M

Set a2 = C, b2 = G

Simulate n Gamma variables G
(1)
t with parameters (a1h, b1) (h is the dis-
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Figure 4.5: A Variance Gamma process with parameters C = 20, G = 80 and

M = 50

cretization step)

Simulate n Gamma variables G
(2)
t with parameters (a2h, b2) (h is the dis-

cretization step)

Simulate the process as

X
(V G)
t = G

(1)
t −G

(2)
t

4.4 Risk-Neutral Characteristic Functions

Given the result from section 3.3.2, we can give the characteristic function

under the risk-neutral equivalent measure for all the Lévy processes we have

been studying until now. For simplicity of calculation, we set S0 = 1. In

that case, ln(S0) = 0 and vanishes from the expression of the characteristic
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function.

4.4.1 Merton Jump-Diffusion Model

The characteristic function of the Merton jump-diffusion model under the mea-

sure P is given by:

Φ(u) = exp

{
t

(
iγu− 1

2
σ2u2 + λ

(
eiαu−

1
2
δ2u2 − 1

))}
(4.43)

We can then split the characteristic exponent into two parts, a drift part

µ(u) = iγut and a no-drift part ϕ(u) = −1
2
σ2u2t+ λ

(
eiαu−

1
2
δ2u2 − 1

)
t.

Under the risk-neutral measure, the drift part can be written as

µRN(u) = i

(
r − ϕ(−i)

t

)
ut = i

(
r − 1

2
σ2 − λ

(
eα+ 1

2
δ2 − 1

))
ut (4.44)

So, the risk-neutral characteristic function of the Merton jump-diffusion model

is given by

ΦRN(u) = exp

{
t

[
i∆u− 1

2
σ2u2 + λ

(
eiαu−

1
2
δ2u2 − 1

)]}
(4.45)

where ∆ is the risk-neutral drift

∆ = r − 1

2
σ2 − λ(eα+ 1

2
δ2 − 1) (4.46)

And the risk-neutral process for stock price is thus given by

St = S0 exp
{
XJD
t (∆, σ, λ, α, δ)

}
= exp

{
XJD
t (∆, σ, λ, α, δ)

}
as S0 = 1

where XJD
t is the Merton Jump-Diffusion process and ∆(r) is the risk-neutral

drift.



94 Lévy Processes for Financial Modeling

4.4.2 Kou Jump-Diffusion Model

Analogously for the Double Exponential Kou jump-diffusion model:

Φ(u) = exp

{
t

(
iγu− 1

2
σ2u2 + λ

(
pη1

η1 + iu
+

(1− p)η2

η2 + iu
− 1

))}
(4.47)

We can then split the characteristic exponent into two parts, a drift part

µ(u) = iγut and a no-drift part ϕ(u) = −1
2
σ2u2t+ λ

(
pη1
η1+iu

+ (1−p)η2
η2+iu

− 1
)
t.

Under the risk-neutral measure, the drift part can be written as

µRN(u) = i

(
r − ϕ(−i)

t

)
ut

= i

(
r − 1

2
σ2 − λ

(
pη1

η1 + 1
+

(1− p)η2

η2 + 1
− 1

))
ut (4.48)

So, the risk-neutral characteristic function of the Double Exponential Kou

jump-diffusion model is given by

ΦRN(u) = exp

{
t

[
i∆u− 1

2
σ2u2 + λ

(
pη1

η1 + iu
+

(1− p)η2

η2 + iu
− 1

)]}
(4.49)

where ∆ is the risk-neutral drift

∆ = r − 1

2
σ2 − λ

(
pη1

η1 + 1
+

(1− p)η2

η2 + 1
− 1

)
(4.50)

And the risk-neutral process for stock price is thus given by

St = S0 exp
{
XDE
t (∆, σ, λ, p, η1, η2)

}
= exp

{
XDE
t (∆, σ, λ, p, η1, η2)

}
as S0 = 1

where XDE
t is the Kou Jump-Diffusion process and ∆(r) is the risk-neutral

drift.
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4.4.3 Normal Inverse Gaussian Model

Analogously for the Normal Inverse Gaussian:

Φ(u) = exp
{
−δt

(√
α2 − (β + iu)2 −

√
α2 − β2

)}
(4.51)

We can then split the characteristic exponent into two parts, a drift part

µ(u) = 0 and a no-drift part ϕ(u) = −δt
(√

α2 − (β + iu)2 −
√
α2 − β2

)
.

Under the risk-neutral measure, the drift part can be written as

µRN(u) = i

(
r − ϕ(−i)

t

)
ut = i

(
r + δ

(√
α2 − (β + 1)2 −

√
α2 − β2

))
ut

(4.52)

So, the risk-neutral characteristic function of the Normal Inverse Gaussian

model is given by

ΦRN(u) = exp
{
i∆u− δt

(√
α2 − (β + iu)2 −

√
α2 − β2

)}
(4.53)

where ∆ is the risk-neutral drift

∆ = r + δ
(√

α2 − (β + 1)2 −
√
α2 − β2

)
(4.54)

And the risk-neutral process for stock price is thus given by

St = S0 exp
{
∆t+XNIG

t (δ, α, β)
}

= exp
{
∆t+XNIG

t (δ, α, β)
}

as S0 = 1

where XNIG
t is the NIG process and ∆(r) is the risk-neutral drift.

4.4.4 Variance Gamma Model

As seen before, we can formulate the characteristic function of the Variance

Gamma model under the measure P as

Φ(u) =

(
1− iuθν +

1

2
σ2u2ν

)−t/ν
(4.55)
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or

Φ(u) =

(
GM

GM + (M −G)iu+ u2

)Ct
(4.56)

First, we present the risk-neutral form for the first formulation and next for the

second. The first characteristic function under the measure P can be rewritten

as

Φ(u) =

(
1− iuθν +

1

2
σ2u2ν

)−t/ν
= exp

(
ln

(
1− iuθν +

1

2
σ2u2ν

)−t/ν)

= exp

(
− t
ν

ln

(
1− iuθν +

1

2
σ2u2ν

))
(4.57)

We can then split the characteristic exponent into two parts, a drift part

µ(u) = 0 and a no-drift part ϕ(u) = − t
ν

ln
(
1− iuθν + 1

2
σ2u2ν

)
.

Under the risk-neutral measure, the drift part can be written as

µRN(u) = i

(
r − ϕ(−i)

t

)
ut = i

(
r +

ln
(
1− θν − 1

2
σ2ν
)

ν

)
ut (4.58)

So, the risk-neutral characteristic function of the Variance Gamma model (1)

is given by

ΦRN(u) = exp

{
i∆ut− t

ν
ln

(
1− iuθν +

1

2
σ2u2ν

)}
(4.59)

or

ΦRN(u) = ei∆ut
(

1− iuθν +
1

2
σ2u2ν

)−t/ν
(4.60)

where ∆ is the risk-neutral drift

∆ = r +
ln
(
1− θν − 1

2
σ2ν
)

ν
(4.61)
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And the risk-neutral process for stock price is thus given by

St = S0 exp
{
∆t+XV G

t (σ, θ, ν)
}

= exp
{
∆t+XV G

t (σ, θ, ν)
}

as S0 = 1

where XV G
t is the VG process and ∆(r) is the risk-neutral drift.

On the other hand, the second characteristic function under the measure

P can be rewritten as

Φ(u) =

(
GM

GM + (M −G)iu+ u2

)Ct
= exp

(
ln

[(
GM

GM + (M −G)iu+ u2

)Ct])

= exp

(
Ct ln

(
GM

GM + (M −G)iu+ u2

))
(4.62)

We can then split the characteristic exponent into two parts, a drift part

µ(u) = 0 and a no-drift part ϕ(u) = Ct ln
(

GM
GM+(M−G)iu+u2

)
.

Under the risk-neutral measure, the drift part can be written as

µRN(u) = i

(
r − ϕ(−i)

t

)
ut = i

(
r − C ln

(
GM

GM + (M −G)− 1

))
ut

(4.63)

As ln
(
A
B

)
= − ln

(
B
A

)
and GM+(M−G)−1 = (M−1)(G+1), we can rewrite

µRN(u) as

µRN(u) = i

(
r + C ln

(
(M − 1)(G+ 1)

GM

))
ut (4.64)

So, the risk-neutral characteristic function of the Variance Gamma model (2)

is given by

ΦRN(u) = exp

{
i∆ut+ Ct ln

(
GM

GM + (M −G)iu+ u2

)}
(4.65)
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Model ϕ(u)

BS(σ > 0) −1
2
σ2u2t

JD(σ > 0, λ > 0, δ > 0) −1
2
σ2u2t+ λt

(
eiuα−

1
2
u2δ2 − 1

)
DE(σ > 0, λ > 0, p > 0, η1 > 0, η2 > 0) −1

2
σ2u2t+ λt

(
pη1
η1+iu

+ (1−p)η2
η2+iu

− 1
)

NIG(α > 0,−α < β < α, δ > 0) −δt
(√

α2 − (β + iu)2 −
√
α2 − β2

)
VG1(σ > 0, ν > 0) − t

ν
ln
(
1− iuθν + 1

2
σ2u2ν

)
VG2(C > 0, G > 0,M > 0) Ct ln

(
GM

GM+(M−G)iu+u2

)
Table 4.6: No-drift part of the characteristic exponent of some paramet-

ric Lévy processes (BS: Black-Scholes, JD: Merton jump-diffusion, DE: Kou

double-exponential jump-diffusion, NIG: Normal Inverse Gaussian, VG: Vari-

ance Gamma)

or

ΦRN(u) = ei∆ut
(

GM

GM + (M −G)iu+ u2

)Ct
(4.66)

where ∆ is the risk-neutral drift

∆ = r + C ln

(
(M − 1)(G+ 1)

GM

)
(4.67)

As a summary, we have presented the drift and no-drift parts of the charac-

teristic function of the various models in the tables 4.6 and 4.7. We remember

that the risk-neutral characteristic function is defined (when S0 = 1) as

ΦRN(u) = eϕ(u)+µRN (u) = eϕ(u)+i∆ut (4.68)
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Model ∆ = r − ϕ(−i)
t

BS r − 1
2
σ2

JD r − 1
2
σ2 − λ

(
eα+ 1

2
δ2 − 1

)
DE r − 1

2
σ2 − λ

(
pη1
η1+1

+ (1−p)η2
η2+1

− 1
)

NIG r + δ
(√

α2 − (β + 1)2 −
√
α2 − β2

)
VG1 r +

ln(1−θν− 1
2
σ2ν)

ν

VG2 r + C ln
(

(M−1)(G+1)
MG

)
Table 4.7: Drift parameter under the risk-neutral measure
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Chapter 5

Option Pricing with FRFT

Several methods can be used to price an option under a Lévy process. One

can derive the partial differential equation PDE (in particular partial integro-

differential equation PIDE). Then, a lot of numerical methods, like finite dif-

ferences for example, can be used to solve (numerically) these PDEs. However

this method is a bit complex given the jump part.

Another method, easy to implement and also available for exotic products is

the Monte-Carlo method. In this setting, we just need to simulate an im-

portant number of paths of the risk neutral process, take the average final

value and take its discounted value to recover the option price. However, this

method is computationally heavy because one needs to simulate processes with

a little discretization step to obtain good results and then take a lot of paths

to ensure a good approximation. However, there exist some tricks to simulate

a jump-diffusion process on a few points and then to be able to price exotic

options in an easy way.

A third method is based on the fact that the probability density of a Lévy

process is often not known in closed form but its characteristic function al-
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ways is. Due to this fact, Fourier-based option pricing methods have been

developed for exponential-Lévy models. These methods require the use of te

Fourier transform. They are very well performing since the Fourier transform

can be efficiently computed using fast algorithm, so that the overall complexity

of the algorithm for option price is comparable with the cost for evaluating

the Black-Scholes formula. Below, we develop the analytic form of the Fourier

transform of the option price and then explain the FFT and FRFT algorithms

to calculate the anti-transform and to recover the option price.

5.1 An Analytic Expression for the Fourier

Transform

In this section, we follow Carr and Madan’s 1999 paper [24] which gives a

revolutionary method based on Fourier transform and the use of the FFT

algorithm for option pricing when the characteristic function of the log-price

is known analytically. They develop an analytic expression for the Fourier

transform of an option price (or its time value, see below). Then, they recover

the option price by making the anti-transform with FFT. In this thesis, we

adapt the methodology of Carr and Madan [24] in order to use the fractional

FFT (FRFT), developed by Bailey and Swarztrauber in 1991 and 1994 [8] [9]

and recently used by Chourdakis [31] for option pricing.

We begin explaining why we work with log-price sT = ln(ST ). Since we choose
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S0 = 1, we have

ST = exp(LT )

sT = ln(exp(LT )) = LT

(5.1)

The log-price process is then totally described by the risk-neutral Lévy process

we use. The characteristic function of the log-price is thus the risk-neutral

characteristic function of the Lévy process, that is

φT (u) = E[exp(iusT )] = E[exp(iuLT )] (5.2)

Moreover, even though any risk-neutral Lévy process can take negative values,

the exponential of this process is always positive, which is a requisite for a

process describing the path of a stock price.

5.1.1 Modified Option Price

Let be sT := ln(ST ) and k := ln(K), where K is the strike price of the option.

Then the value of a European call option with maturity T as a function of k

is given by

CT (k) =

∫ ∞

k

e−rT
(
es − ek

)
qT (s)ds (5.3)

where qT (s) is the risk-neutral density function of s.

Since CT (k) is not square integrable (CT (k) tends to S0 as k tends to −∞)

Carr and Madan define a modified call price function:

cT (k) = eαkCT (k), α > 0. (5.4)
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We now expect cT (k) to be square integrable for a range of α values and ∀k.

The parameter α is referred to as the dampening factor. The Fourier transform

and inverse Fourier transform of cT (k) are given by

FcT (v) = ψT (v) =

∫ ∞

−∞
eivkcT (k)dk (5.5)

cT (k) =
1

2π

∫ ∞

−∞
e−ivkFcT (v)dv =

1

2π

∫ ∞

−∞
e−ivkψT (v) (5.6)

Thus

CT (k) = e−αkcT (k)

= e−αk
1

2π

∫ ∞

−∞
e−ivkψT (v)

(5.7)

Since ∫ +∞

−∞
e−ivkψT (v) =

∫ +∞

0

e−ivkψT (v) +

∫ 0

−∞
e−ivkψT (v)

=

∫ +∞

0

e−ivkψT (v) +

∫ +∞

0

e−ivkψT (−v)

(5.8)

Note that when ψT (v) is symmetric we have ψT (v) = ψT (−v) then∫ +∞

−∞
e−ivkψT (v) = 2Re

∫ +∞

0

e−ivkψT (v) (5.9)

Re(.) stands for the real part. As CT (k) is real

CT (k) =
e−αk

π

∫ ∞

0

e−ivkψT (v) (5.10)

We just have to retrieve an analytic form for ψT (v) to put in the equation

(5.10) to get back the price of the option.
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Carr and Madan obtain the following form for ψT (v)

ψT (v) =
e−rTΦT (v − (α+ 1)i)

α2 + α− v2 + i(2α+ 1)v
(5.11)

We explain how to derive this result.

Let be

ψT (v) =

∫ ∞

−∞
eivkcT (k)dk, cT (k) = eαkCT (k)

CT (k) =

∫ ∞

k

e−rT
(
es − ek

)
qT (s)ds

we can write

ψT (v) =

∫ ∞

−∞
eivk

∫ ∞

k

eαke−rT
(
es − ek

)
qT (s)dsdk (5.12)

=

∫ ∞

−∞
e−rT qT (s)

∫ s

−∞
eαk
(
es − ek

)
eivkdkds

=

∫ ∞

−∞
e−rT qT (s)

∫ s

−∞

(
es+αk − e(1+α)k

)
eivkdkds (5.13)

=

∫ ∞

−∞
e−rT qT (s)

∫ s

−∞

(
es+(α+iv)k − e(1+α+iv)k

)
dkds

=

∫ ∞

−∞
e−rT qT (s)

[∫ s

−∞
es+(α+iv)kdk −

∫ s

−∞
e(1+α+iv)kdk

]
ds

Since the following equation holds:∫ b

a

f ′(x)ef(x)dx = ef(x) (5.14)

we can rewrite∫ s

−∞
es+(α+iv)kdk =

[
es+(α+iv)k

α+ iv

]s
−∞

=
es+(α+iv)s

α+ iv
− lim

k→−∞

(
es+(α+iv)k

α+ iv

)
=

e(α+1+iv)s

α+ iv



106 Option Pricing with FRFT

∫ s

−∞
e(1+α+iv)kdk =

[
e(1+α+iv)k

α+ 1 + iv

]s
−∞

=
e(1+α+iv)s

α+ 1 + iv
− lim

k→−∞

(
e(1+α+iv)k

α+ 1 + iv

)
=

e(1+α+iv)s

α+ 1 + iv
.

Hence we obtain

ψT (v) =

∫ ∞

−∞
e−rT qT (s)

[
e(α+1+iv)s

α+ iv
− e(1+α+iv)s

α+ 1 + iv

]
ds (5.15)

=

∫ ∞

−∞
e−rT qT (s)

[
(α+ 1 + iv)e(α+1+iv)s − (α+ iv)e(α+1+iv)s

(α+ iv)(α+ 1 + iv)

]
ds

=

∫ ∞

−∞
e−rT qT (s)

[
e(α+1+iv)s

α2 + α− v2 + i(2α+ 1)v

]
ds

=
e−rT

α2 + α− v2 + i(2α+ 1)v

∫ ∞

−∞
qT (s)e(α+1+iv)sds.

It is easy to see that the following relation holds

(α+ 1 + iv)s =

(
αi

i
+
i

i
+ iv

)
s

= i

(
α

i
+

1

i
+ v

)
s

= i (−iα− i+ v) s

= i (v − (α+ 1)i) s

so that since we have

ΦT (u) =

∫ ∞

−∞
qT (s)eiusds

and

ψT (v) =
e−rT

α2 + α− v2 + i(2α+ 1)v

∫ ∞

−∞
qT (s)ei(v−(α+1)i)sds

we obtain the following expression

ψT (v) =
e−rTΦT (v − (α+ 1)i)

α2 + α− v2 + i(2α+ 1)v
. (5.16)

This concludes the proof.



5.1 An Analytic Expression for the Fourier Transform 107

Figure 5.1: The function zT (k).

5.1.2 Time Value of an Option

The formula derived in the previous section depends on the intrinsic value of

the option. However, when dealing with out-of-the-money options, there is no

intrinsic value. A Fourier transform technique based on the time value of the

option has to be derived.

Carr and Madan [24] developed a formula for out-of-the-money options based

on the time value of the option. We derive this formula but we don’t imple-

ment it since the authors find very little difference between the results obtained

by using the two formulas. Again, let sT := ln(ST ) and k := ln(K), where

K is the strike price of the option and S0 the initial spot price. Let zT (k)

be the T maturity put price when k < ln(S0) and the T maturity call price

when k > ln(S0). As shown in Figure (5.1), the function zT (k) is peaked as

k = ln(S0) and declines in both directions as k goes to −∞ and to +∞.

Below, we explain the development of an analytic expression for the Fourier

transform of zT (k) in terms of the characteristic function of sT .
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Let ζT (v) denote the Fourier transform of zT (k)

ζT (v) =

∫ +∞

−∞
eivkzT (k)dk (5.17)

The prices of out-of-the-money options are obtained by inverting this transform

zT (k) =
1

2π

∫ +∞

−∞
e−ivkζT (v)dv (5.18)

Let’s give an analytic form for zT (k)

zT (k) = e−rT
∫ +∞

−∞

{
(ek − es)1s<k,k<0 + (es − ek)1s>k,k>0

}
qT (s)ds (5.19)

where qT is the risk-neutral density. Then, we have

ζT (v) =

∫ +∞

−∞
eivke−rT

∫ +∞

−∞

{
(ek − es)1s<k,k<0 + (es − ek)1s>k,k>0

}
qT (s)dsdk

=

∫ 0

−∞
eivke−rTdk

∫ k

−∞
(ek − es)qT (s)ds

+

∫ +∞

0

eivke−rTdk

∫ +∞

k

(es − ek)qT (s)ds

=

∫ 0

−∞
e−rT qT (s)ds

∫ +∞

s

(e(1+iv)k − eseivk)dk

+

∫ +∞

0

e−rT qT (s)ds

∫ s

0

(eseivk − e(1+iv)k)dk (5.20)

Formula (5.20) after simplification gives

ζT (v) = e−rT
[

1

1 + iv
− ert

iv
− ΦT (v − i)

v2 − iv

]
(5.21)

However, when maturity is small (T → 0), the function zT (k) approximates

the shape of a Dirac delta function and is difficult to invert. Therefore, it is

useful to consider the function sinh(αk)zT (k) since this function vanished at
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k = 0. Hence we have

γT (v) =

∫ +∞

−∞
eivk sinh(αk)zT (k)dk (5.22)

=

∫ +∞

−∞
eivk

eαk − e−αk

2
zT (k)dk

=

∫ +∞

−∞

e(iv+α)k − e(iv−α)k

2
zT (k)dk

=
1

2

[∫ +∞

−∞
e(iv+α)kzT (k)dk −

∫ +∞

−∞
e(iv−α)kzT (k)dk

]
=

1

2

[∫ +∞

−∞
ei(v−iα)kzT (k)dk −

∫ +∞

−∞
ei(v+iα)kzT (k)dk

]
=

ζT (v − iα)− ζT (v + iα)

2
.

The time value is thus given by:

zT (k) =
1

sinh(αk)

1

2π

∫ +∞

−∞
e−ivkγT (v)dv (5.23)

γT (v) =
ζT (v − iα)− ζT (v + iα)

2
(5.24)

ζT (k) = e−rT
[

1

1 + iv
− ert

iv
− ΦT (v − i)

v2 − iv

]
(5.25)

5.2 FFT

Now we have an analytic expression for the Fourier transform of the option

price, we have to look for a method to invert this transform (take the anti-

transform) to recover the option price. The well known method to do this is

the Fast Fourier Transform (FFT) algorithm. Roughly speaking, the FFT,

developed by Cooley and Tukey in 1965 [34], consists in approximating the
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continuous Fourier transform (CFT) with its discrete counterpart (DFT)∫ ∞

0

e−ixuh(u)du ≈
N−1∑
j=0

e−i
2π
N
kjhj k = 0, . . . , N − 1 (5.26)

The FFT is thus an easy and fast way to compute sums of type
∑N−1

j=0 ei
2π
N
kjhj.

Definition 5.1 (Trapezoidal Rule)∫ b

a

f(x)dx ≈ ∆x

[
1

2
f(x0) + f(x1) + f(x2) + · · ·+ f(xn−1) +

1

2
f(xn)

]
(5.27)

where

∆x =
(b− a)
n

and xj = a+ j∆x

Using an integration rule as the trapezoidal rule, we can rewrite the integral

that appears in the formula (5.10) for in the option price as follows:∫ ∞

0

e−ivkψ(v)dv ≈
N−1∑
j=0

e−ivjkψ′(vj)η (5.28)

where η is the discretization step or grid spacing (∆x in the definition of the

trapezoidal rule), the points vj are chosen to be equidistant with grid spacing

η, that is vj = ηj. Finally ψ′ is just ψ weighted by the integration rule. The

upper limit of the integration is thus a = ηN so the value of η has to be small

enough to allow a good approximation but not too small to guarantee that the

characteristic function is equal to zero for any point a′ > a.

We can clearly see that the sum in (5.28) is not a direct application of the

FFT algorithm. Thus, we cannot use the FFT algorithm on that summation,

we need to modificate it. In general, the strikes near the spot price are of
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interest since such options are traded most frequently. We consider log-strikes

equally spaced around the log spot price s0.

ku = −1

2
Nλ+ λu+ s0, for u = 0, . . . , N − 1 (5.29)

However, when we set S0 = 1, we obtain s0 = 0 and this implies ku = −1
2
Nλ+

λu where λ denotes the distance between two consecutive log-strikes. We take

thus log-strikes ranging from −b to b where b = 1
2
Nλ.

The summation (5.28) can be rewritten as

N−1∑
j=0

e−ivjkuψ′(vj)η =
N−1∑
j=0

e−i(−
1
2
Nλ+λu)vjψ′(vj)η

=
N−1∑
j=0

e−i(−
1
2
Nλ+λu)ηjψ′(vj)η

=
N−1∑
j=0

e−iλuηjei
Nλ
2
ηjψ′(vj)η

If we set hj = ei
Nλ
2
ηjψ′(vj)η and λη = 2π

N
we can rewrite the summation as

follows:
N−1∑
j=0

e−i
2π
N
ujhj (5.30)

and we can apply the FFT algorithm on the vector hj = ei
Nλ
2
ηjψ′(vj)η provided

that:

λη =
2π

N
. (5.31)

It is clear that among the three parameters η, λ and N only two can be arbi-

trarily chosen, the third must satisfy the condition (5.31). Since the parameters

η and N are chosen to make the integration accurate enough, the value of the

strike grid spacing λ will be inversely proportional to the upper integration
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bound. Since the resulting grid spacing may not be dense enough for option

pricing, we will have to increase N , actually increasing consistently the com-

putation time. So we face a trade-off between accuracy and the number of

strikes.

In fact, the major problem of option pricing with FFT algorithm is the con-

dition (5.31). For option pricing, we need an integration grid very dense to

insure a good integral approximation but also a very dense log-strike grid since

we need a consequent number of option prices for calibration. As the condi-

tion (5.31) in the FFT procedure the integration grid spacing η is inversely

proportional to the log-strike grid spacing λ, the unique solution to increase

both densities (to reduce both η and λ) is to increase N .

We need a more efficient method, which transcends the condition (5.31), to

calibrate our model.

5.3 FRFT

The Fractional FFT is an easy and fast way to compute sums of type

N−1∑
j=0

e−i2πkjεhj (5.32)

We clearly denote that FFT is a special case of FRFT where ε = 1
N

. Fractional

FFT algorithm needs three FFT procedures, that is to say an FRFT procedure

is three time longer than an FFT one taken on the the same input vector.

However, the benefits of using FRFT is that both grid η and λ can be chosen

independently. Practically, we can obtain a good integral approximation taking

a fine integration grid and taking the log-strikes around ATM strike without

having to span a huge vector with zeros, providing a huge computational time.
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As input vectors are shorter in the FRFT case, the resulting computational

time of an FRFT procedure is much shorter than its FFT counterpart.

Let’s show an example. Carr and Madan, in their paper, took a 4096 point

FFT with upper integration bound 1024. Since the upper integration is chosen

to be a = ηN , the integration grid step is η = 0.25. Since we have λη = 2π
N

then the log-strike grid step is λ = 0.006. However, only 67 out of the 4096

points of the log-strike grid fall in the interval ATM strike ±20%, which is of

interest for option pricing. In this way, more than 4000 option prices calculated

by using the FFT procedure are not required. Analogously, out of the 4096

points that are input in the FFT procedure (values of the integrand), only 80

are greater than 10−8 that is to say significantly different from zero.

Following Bailey and Swartztrauber [8] and [9] and Chourdakis [31], let’s now

take a look on the implementation of the FRFT. Suppose that we want to

compute an N-point FRFT on a sequence (or vector) x. The algorithm can be

stated as follows. Define two 2N-points vectors y and z as

yj = xje
−πij2ε 0 ≤ j < m (5.33)

yj = 0 m ≤ j < 2m (5.34)

zj = eπij
2ε 0 ≤ j < m (5.35)

zj = eπi(j−2m)2ε m ≤ j < 2m (5.36)

where ε is the fractional parameter given by ε = 1
N

= ηλ
2π

The FRFT is given by

Gk(x, ε) = e−πik
2ε �D−1

k [Dj(y)�Dj(z)] (5.37)
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where�means element-wise multiplication andDj(.) is the DFT
∑N−1

j=0 ei
2π
N
kjhj

calculated with the FFT algorithm.

To compute the FRFT algorithm, one just needs to initially choose the param-

eters, that is the number of points N , the upper integration bound a and the

bound for log prices b (prices ranged on [e−b, eb]). The integration grid spacing

is then given by η = a/N , the log-strikes grid spacing by λ = 2b/N and the

fractional parameter by ε = ηλ
2π

. Then, the two grids can be described as it

follows. The input grid is spanned on the interval (a,N) with grid spacing

η and the output grid on the interval (−b, b) with grid spacing λ. As in the

case of the FFT, we evaluate the function ψ on the input grid and apply the

integration rule (trapezoidal rule). Then we apply the FRFT routine, recover

the normalized prices and storage two vectors, one with the strike prices and

one with the option prices.

5.4 Results

5.4.1 The Dampening Factor α

As seen previously, since CT (k) is not square integrable we have to use a

modified option price which directly depends on a dampening factor α. As

this factor cannot be chosen randomly, in this section, we analyze the impact

of the dampening factor α on the option price.

We calculate various option prices with the FRFT algorithm taking the same

parameters and choosing the value of the dampening parameters ranging in

the interval [0, 7]. From the Figure (5.2) we see that for values of α greater

than 0.5 (in this case, for the given parameters), the option price given by the
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Figure 5.2: The value of the option price for different values of the dampening

factor α. The parameters are chosen to be S=110, K=100, r=0.05, T=1,

sigma=0.2, lambda=0.1, jumpa=-0.1, jumpb=0.2
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FRFT approximates satisfactorily the “true” option price (computed by the

Merton series expansion). In general, we found that a value of α chosen in the

interval [2, 5] gives very good results.

5.4.2 The Fourier Approximation

Since we have a closed-form solution for the Merton Jump-Diffusion model

(the Merton series expansion) we can compare the results obtained by using

this formula with the results obtained by using FRFT. This comparison shows

where the FRFT method does not work well.

Let’s first describe the Merton series expansion. Assume we have a Merton

Jump-Diffusion with parameters σ, λ, α and δ and r is the risk-free interest

rate, τ the time to maturity, S the spot price and K the strike price. If we set

λ′ = λeα+ 1
2
δ2 (5.38)

and for i = 0, . . . , n with n→∞

σ′i =

(
σ2 +

i

τ
δ2

)1/2

(5.39)

r′i = r +
i

τ

(
α+

1

2
δ2

)
− λ

(
eα+ 1

2
δ2 − 1

)
(5.40)

Analogously

fi(S,K, τ) = BS(S,K, τ, ri, σi) (5.41)

where BS is the Black-Scholes price.

Then, the option price given by the Merton Jump-Diffusion is given by

CJD(S,K, τ, r, σ, λ, α, δ) =
n∑
i=0

e−λ
′τ (λ′τ)i

i!
fi(S,K, τ) (5.42)
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Ideally, n has to go to infinity but we found that with a number for n superior

to 10 (say 30 in average) we obtain good results.

The code in Matlab that performs the Merton Series Expansion can be found

in appendix.

Now we have a closed-form result for the jump-diffusion model, we can confront

it with the result given by the FRFT procedure and test the goodness of the

method (above all because we need to use this procedure for models for which

a closed-form doesn’t exist). We use the Average Relative Percentage Error

given by

ARPE =
1

N

N∑
i=0

|PMSE − PFRFT |
PMSE

(5.43)

where N is the number of options prices we used, PMSE is the price given

by the Merton Series Expansion and PFRFT is the price given by the FRFT

algorithm.

From the results in the table, we can clearly conclude that the error produced

by the Fourier approximation is very little. The only cases where Fourier

method gives unsatisfactory results are when the maturity tends to zero (very

short maturities) and when the options are deep-in-the-money or deep-out-of-

the-money. We are mainly interested in options around the strike price (±20%

of the ATM strike price) and this problem is not so important. For options

near to the maturity, the Fourier method cannot give us satisfactory prices, so

we will take into account this fact for the calibration of the model and we use

options with at least 1-month maturity.



118 Option Pricing with FRFT

ARPE (Average Relative Percentage Error) :

Number of points : 100

Parameters values :

S = 1.00; K = 1.00; r = 0.05; T = 1.00; sigma = 0.15;

lambda = 0.10; jumpa = -0.05; jumpb = 0.20

S_ATM : +3.799399e-009 T : +3.472825e-014

S_ITM : +2.130608e-010 T_near0 : +1.484451e+001

S_DITM : +3.521305e-012 T_infty : +5.048629e-016

S_OTM : +2.231980e-008 r : +3.794329e-016

S_DOTM : +1.012594e+035 sigma : +4.480838e-016

K_ATM : +1.196277e-009 lambda : +4.518968e-016

K_ITM : +2.146435e-010 jumpa_n : +4.592392e-016

K_DITM : +5.480871e-004 jumpa_p : +5.299982e-016

K_OTM : +1.467181e-008 jumpb : +5.180194e-016

K_DOTM : +4.918132e-008

In figure 5.4.2 we plot the Average Relative Percentage Error for various pa-

rameters. On the X axis we plot a range of values of the parameter (for

example, Spot ATM represents ±25% of the strike price).

5.4.3 The Implied Volatility Surface

Using a much shorter input vector, FRFT is faster than FFT and allows to

calculate simultaneously option prices for various maturities. Then using an

iterative search procedure like the Newton-Raphson method, we can easily find

the implied volatilities for every option prices and plot an implied volatility

surface.

In figure 5.4.3 we plot the volatility surfaces generated with four models:

Merton Jump-Diffusion, Kou Double-Exponential Jump-Diffusion, Variance

Gamma and Normal Inverse Gaussian.
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Figure 5.3: Relative errors versus parameters ranging around the following:
S = 1, K = 1, r = 0.05, T = 1, σ = 0.15, λ = 0.1, α = −0.05 and
δ = 0.2. From top-left to bottom-right: Spot price ATM ([80%, 120%] of S),
Spot price ITM ([100%, 140%] of S), Spot price OTM ([60%, 100%] of S), Strike
price ATM ([80%, 120%] of K), Strike price ITM ([60%, 100%] of K), Strike
price OTM ([100%, 140%] of K), Interest rate ([80%, 120%] of r), Volatility
([80%, 120%] of σ), Jumps/year ([80%, 120%] of λ), Mean jump ([80%, 120%]
of α), Jump volatility ([80%, 120%] of δ)
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Figure 5.4: Smiles surfaces generated with the Jump-Diffusion model (r =
0.05, λ = 0.1, σ = 0.15, a = −0.05, b = 0.4), Double-Exponential model (r =
0.05, λ = 0.05, p = 0.09, η1 = 0.25, η2 = 0.4), NIG model (r = 0.05, δ =
0.1622, α = 5.1882, β = −2.8941) and VG model (r = 0.05, σ = 0.1213, θ =
−0.1436, ν = 0.1686)



Chapter 6

Calibration

Now we are able to simulate the path of a Lévy process, to obtain option

prices under it, the next step is to calibrate this model to market option

prices. The calibration consists in estimating the (unknown) parameters of

our model which reproduce (almost) perfectly the market option prices. This

object is the analog, for exponential Lévy models, of implied volatility, used in

the Black-Scholes framework. The main purpose of calibration is pricing OTC

options, often exotic, which don’t quote in any market and which prices are

therefore unknown. For this purpose, to calibrate the model, we use vanilla

option prices, which are quoted on some exchange.

We first explain the calibration procedure and in a second part we expose the

results obtained.

All the data in this chapter have been entirely downloaded (freely) from the

following websites:

Bloomberg (http://www.bloomberg.com)

MSN Money (http://moneycentral.msn.com)

Reuters (http://www.reuters.com)
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The Wall Street Journal (http://www.wsj.com)

Yahoo! Finance (http://finance.yahoo.com)

The Options Industry Council (http://www.optionseducation.org).

6.1 The Calibration Inputs

To realize the model calibration, we need option market prices. Among the

large choice of options available on the market, we select index options. The

main reason is that index options, unlike stock options, are European-style.

The pricing methods we develop in the former chapters work only with European-

style options. We could extend these models to American-Style options, but

this would be beyond the scope of this thesis. Recently, with the boom of

ETFs (Exchange Trade Funds), classic index products become less liquid. As

an example, nowadays, some traders assume to watch QQQQ quotes (an ETF

tracking the Nasdaq-100 Index) as a benchmark for Nasdaq market. Anal-

ogously, options on ETFs are much more liquid than index options. However,

an ETF share being sort of a stock, ETF options are American-style. As we

need European-style options, we choose Index options. Among them, the far

most liquid is SPX, an option on the Standard & Poors 500 Index. The

second most liquid product is RUT, an option on the Russell-2000 Index.

Another choices are DJX (on the Dow Jones Industrial Average Index),

NDX (on the Nasdaq-100 Index) and XEO (the European-style alternative

to OEX, famous option on the Standard & Poors 100 Index).

For the purpose of calibration, we decide to use options at various strikes and

maturities on SPX, RUT, DJX and NDX.

We cannot consider option pricing without talking about interest rates and
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Bills Maturity Date Price Yield
1 month Mar-27-2008 99.87 2.030
3 month May-29-2008 99.60 1.705
6 month Aug-28-2008 99.12 1.810
Notes/Bonds Coupon Maturity Date Price Yield
2 year 2.000 Feb-28-2010 100.76 1.612
5 year 2.750 Feb-28-2013 101.27 2.477
10 year 3.500 Feb-15-2018 99.72 3.534
30 year 4.375 Feb-15-2038 99.19 4.424

Table 6.1: U.S. Treasury Bonds Rates on 03-March-08

dividends. These two factors are input in our option pricing models and have

to be accurately chosen. As we are dealing with various maturities, the for-

mer cannot be considered constant in our model and we have to construct the

famous yield curve. The latter, that is to say the expected dividend, being an

expected value is not directly available in the market and has to be retrieved

from futures quotes.

We first talk about interest rates, then, about the option sets and finally about

dividends.

6.1.1 The Risk-Free Interest Rate

One difficulty that often arises in practice is how to derive the proper interest

rate to use as an input. Though a truly risk-free asset exists only in theory, in

practice most professionals and academics use short-dated government bonds

of the currency in question. For USD investments, usually U.S. Treasury

bills, notes and bonds are used. These securities are considered to be risk-free

because the likelihood of the government defaulting is extremely low. However,

since we are dealing with options over various maturities, we can’t use the same
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Figure 6.1: U.S. Treasury Yield Curve on 03-March-08

interest rate among all the maturities. The deposit rate for a risk-free bond

maturing on the option’s expiration date is, in general, not observable in the

market. Instead, an interest rate curve is used. Therefore, we construct the

U.S. Treasury yield curve interpolating (often done via bootstrapping) the

yields all over the curve. The prices and corresponding yields of the bonds

used to build the yield curve are in Table (6.1) and the yield curve is plotted

on Figure (6.1). Then the curve provides an estimate of the risk-free rate of

appropriate maturity for the option being priced. This technique allows to

draw a yield curve with maturities until 30 years.

However, for option pricing use, we only need maturities until 3 years and

above all with high precision. For this purpose we use Treasury-bill yield

quotes and Short-Term OTC Treasury Notes. We wrote the yield quotes of

the U.S. Treasury Bills and OTC Notes in Table (6.2) and we plotted the

short-term high-frequency yield curve in Figure (6.2).
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Bills Notes Notes
Maturity Yield Maturity Yield Maturity Yield
06-Mar-08 1.65 15-Sep-08 1.87 15-Oct-09 1.53
13-Mar-08 2.11 30-Sep-08 1.72 31-Oct-09 1.57
20-Mar-08 2.17 15-Oct-08 1.73 15-Nov-09 1.54
27-Mar-08 2.08 31-Oct-08 1.69 30-Nov-09 1.58
03-Apr-08 2.06 15-Nov-08 1.72 15-Dec-09 1.54
10-Apr-08 2.03 30-Nov-08 1.59 31-Dec-09 1.60
17-Apr-08 2.02 15-Dec-08 1.60 15-Jan-10 1.57
24-Apr-08 1.78 31-Dec-08 1.66 31-Jan-10 1.60
01-May-08 1.74 15-Jan-09 1.68 15-Feb-10 1.59
08-May-08 1.73 31-Jan-09 1.65 28-Feb-10 1.61
15-May-08 1.72 15-Feb-09 1.63 15-Mar-10 1.59
22-May-08 1.72 28-Feb-09 1.61 15-Apr-10 1.62
29-May-08 1.72 15-Mar-09 1.60 15-May-10 1.61
05-Jun-08 1.71 31-Mar-09 1.56 15-Jun-10 1.62
12-Jun-08 1.72 15-Apr-09 1.55 15-Jul-10 1.64
19-Jun-08 1.78 30-Apr-09 1.52 15-Aug-10 1.68
26-Jun-08 1.75 15-May-09 1.51 15-Sep-10 1.69
03-Jul-08 1.78 31-May-09 1.52 15-Oct-10 1.72
10-Jul-08 1.80 15-Jun-09 1.49 15-Nov-10 1.73
17-Jul-08 1.80 30-Jun-09 1.51 15-Dec-10 1.76
24-Jul-08 1.80 15-Jul-09 1.49 15-Jan-11 1.76
31-Jul-08 1.81 31-Jul-09 1.51 15-Feb-11 1.79

07-Aug-08 1.80 15-Aug-09 1.51 28-Feb-11 1.82
14-Aug-08 1.81 31-Aug-09 1.52 31-Mar-11 1.85
21-Aug-08 1.81 15-Sep-09 1.53 30-Apr-11 1.90
28-Aug-08 1.81 30-Sep-09 1.55 31-May-11 1.93

Table 6.2: U.S. Treasury Bill and OTC Note Rates on 13-Sep-07

Figure 6.2: U.S. Treasury Yield Curve on 03-Mar-08 based upon Bills and
Short-Term OTC Notes
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6.1.2 The Options Sets

As said before, we chose four index option sets, on the Standard & Poors

500 Index (SPX), on the Russell-2000 Index (RUT), on the Dow Jones

Industrial Average Index (DJX) and on the Nasdaq-100 Index (NDX).

Among all the options available for each index, for liquidity reason, just a few

are well priced, that is to say whose price reflects the real supply and demand

in the market. Indeed, Deep-in-the-Money or Deep-Out-of-the-money options

are often illiquid or with a price next to zero. For this reason, we have to make

a selection among all the option set. We base our choices upon criterion we

expose in following:

1. Options picked have at least one-month maturity (price of options near

to the maturity is very close to the intrinsic value)

2. We pick only options close to the At-the-Money strike price, that is to

say on the interval [80%, 120%] of the ATM strike price

3. Options for which the expression Ask price - Bid price
(Bid price + Ask price)/2

is greater than 10%

are eliminated (a too large Bid-Ask spread often means a wrongly priced

option due to little volume)

4. Options are chosen only if the implied volatility (IV) can be calculated

(Deep-ITM options (close to intrinsic value) and Deep-OTM options

(close to zero) often have unrealistic implied volatilies which cannot even

be calculated). As we are interested in calibrating the implied volatility

surface, we have to get IV for all option prices.
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Now we know which type of options we are looking, let’s take a look more

precisely at the option sets. To select the option set, we just took a picture

of the market during mid-afternoon of March 03, 2008. On this date, we

picked up simultaneously (exactly at the same moment) SPX, RUT, DJX and

DJX quotes, all the options prices available on this day for these indexes, U.S.

Treasury bill and bond prices (to calculate the bond yield curve for interest

risk-free rate) and index futures quotes for calculating expected dividends. Out

of the more than 600 SPX Call options available on the market on March 03,

2008, only 80 are conform with our requisites; 96 on RUT, 154 on DJX and

84 on NDX.

Standard & Poors 500 Index: SPX

The first option set is taken on the Standard & Poors 500 Index. Widely

regarded as the best single gauge of the U.S. equities market, this world-

renowned index includes 500 leading companies in leading industries of the

U.S. economy. Standard & Poors 500 Index is a very liquid index, often

highly volatile. To confirm this feature, we insert a chart, see Figure (6.3),

plotting the last ten trading day quotes for the Standard & Poors 500

Index. Indeed, we can clearly denote a high volatility (with a few price gaps

at beginning of trading days). In Table (6.3) we represent the option prices

for various maturities and strike prices available for SPX on March 03, 2008.

As said before, a significant number of options have been eliminated and we

keep the ones which correspond to our criterion.
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Figure 6.3: Standard & Poors 500 Index (SPX) prices on the last 10 trading
days.

Time to maturity (in days)
Strike S/K 47 75 110 201 292

1100 1.21 231.60 235.70 242.80 256.40 267.60
1150 1.15 185.20 191.30 200.10 216.50 229.50
1175 1.13 162.80 170.00 179.60 197.40 211.30
1200 1.11 141.10 149.40 159.80 178.90 193.60
1225 1.08 120.30 129.70 140.70 161.10 176.40
1250 1.06 100.60 110.90 122.60 144.00 160.00
1275 1.04 82.10 93.30 105.30 127.60 144.10
1300 1.02 65.10 76.90 89.20 112.00 129.00
1325 1.00 49.80 61.90 74.20 97.40 114.60
1350 0.98 36.35 48.10 60.30 83.60 100.90
1375 0.97 24.90 36.20 47.90 70.80 88.20
1400 0.95 15.90 26.10 37.00 59.20 76.40
1425 0.93 9.45 18.00 27.80 48.80 65.50
1450 0.92 4.90 11.80 20.20 39.60 55.70
1475 0.90 2.40 7.10 14.10 31.60 46.80
1500 0.88 1.08 4.20 9.50 24.70 38.90

Table 6.3: SPX option prices
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Figure 6.4: Russell-2000 Index (RUT) prices on the last 10 trading days.

Russell-2000 Index: RUT

The Russell-2000 Index measures the performance of the small-cap segment

of the U.S. equity universe. It includes approximately 2000 of the smallest

securities based on a combination of their market cap and current index mem-

bership. The Russell 2000 is constructed to provide a comprehensive and

unbiased small-cap barometer and is completely reconstituted annually to en-

sure larger stocks do not distort the performance and characteristics of the

true small-cap opportunity set. Due to these features, this index used to be

very volatile.

We include a chart, see Figure (6.4), plotting the last ten trading day quotes

of the Russell-2000 Index. In Table (6.4) we represent the option prices for

various maturities and strike prices available for RUT on March 03, 2008.
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Time to maturity (in days)
Strike S/K 47 75 110 201

550 1.24 132.05 135.25 139.05 147.60
560 1.22 122.75 126.45 130.65 139.60
570 1.19 113.65 117.80 122.45 131.95
580 1.17 104.60 109.40 114.40 124.50
590 1.15 95.90 101.10 106.50 117.35
600 1.13 87.40 93.15 98.90 110.25
610 1.12 79.10 85.30 91.45 103.45
620 1.10 71.00 77.75 84.15 96.75
630 1.08 63.30 70.40 77.25 89.95
640 1.06 55.95 63.40 70.45 83.50
650 1.05 48.95 56.70 63.95 77.25
660 1.03 42.35 50.25 57.55 71.65
670 1.02 36.15 44.25 51.65 65.55
680 1.00 30.45 38.50 46.05 60.25
690 0.99 25.20 33.25 40.90 54.95
700 0.97 20.55 28.30 35.80 49.80
710 0.96 16.40 23.90 31.25 45.25
720 0.95 12.85 20.05 27.10 40.65
730 0.93 9.85 16.45 23.25 36.55
740 0.92 7.35 13.40 19.75 32.65
750 0.91 5.35 10.70 16.75 29.05
760 0.90 3.80 8.50 14.05 25.70
770 0.88 2.60 6.60 11.55 22.55
780 0.87 1.75 5.10 9.55 19.75

Table 6.4: RUT option prices

Nasdaq-100 Index: NDX

The Nasdaq-100 Index, widely perceived as a technology benchmark, includes

100 of the largest domestic and international non-financial securities listed on

the Nasdaq Stock Market based on market capitalization. The Index reflects

companies across major industry groups including computer hardware and

software, telecommunications, retail/wholesale trade and biotechnology. It

does not contain securities of financial companies including investment com-

panies.

In Figure (6.5) we plot the last 10 trading day quotes and volumes of the Nas-

daq-100 Index. As it can be seen, the Nasdaq-100 Index is highly volatile. In

Table (6.5) we listed the option quotes for various strike prices and maturities.
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Figure 6.5: Nasdaq-100 Index (NDX) prices on the last 10 trading days.

Time to maturity (in days)
Strike S/K 47 75 110 201

1400 1.23 334.95 343.40 354.90 378.80
1425 1.21 311.55 321.10 333.15 359.95
1450 1.19 288.35 298.90 311.55 340.15
1475 1.17 265.50 277.20 290.85 320.90
1500 1.15 242.60 255.90 270.25 302.05
1525 1.13 220.50 235.15 250.45 283.70
1550 1.11 198.95 215.05 231.50 265.65
1575 1.10 178.45 195.10 212.70 248.10
1600 1.08 158.55 176.55 194.60 231.15
1625 1.06 139.60 158.35 177.00 214.60
1650 1.05 121.50 140.95 160.35 198.65
1675 1.03 104.45 124.45 144.30 183.35
1700 1.02 88.45 108.95 128.95 168.45
1725 1.00 73.80 94.35 114.40 153.85
1750 0.99 60.40 80.80 100.75 140.30
1775 0.97 48.45 68.20 87.90 127.40
1800 0.96 38.05 57.20 76.10 115.45
1825 0.95 29.20 47.00 65.60 103.80
1850 0.93 21.65 38.35 55.55 93.10
1875 0.92 15.65 30.45 46.80 83.15
1900 0.91 10.95 24.00 38.95 73.75
1925 0.90 7.45 18.50 32.00 65.20

Table 6.5: NDX option prices
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Figure 6.6: Dow Jones Industrial Average Index (DJX) prices and vol-
ume on the last 10 trading days.

Dow Jones Industrial Average Index: DJX

The 30 stocks in the Dow Jones Industrial Average Index are all major

factors in their industries, and their stocks are widely held by individuals

and institutional investors. Founded in 1896, the DJIA index accounts for

approximately 23.8% of the total U.S. market. The Dow Jones Industrial

Average Index is the most-quoted market indicator in newspapers, on TV

and on the Internet. Because of its longevity, it became the first to be quoted

by other publications.

We include a chart (see Figure (6.6)) plotting the last ten trading day quotes

of the Dow Jones Industrial Average Index. On Table (6.6) we listed

option quotes on DJX security.
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Time to maturity (in days)
Strike S/K 47 75 110 201 292

98 1.25 24.43 24.60 24.95 25.88 26.63
99 1.23 23.40 23.63 24.10 25.03 25.83
100 1.22 22.50 22.73 23.20 24.18 25.03
101 1.21 21.55 21.80 22.30 23.35 24.20
102 1.20 20.63 20.88 21.40 22.53 23.40
103 1.19 19.68 20.08 20.55 21.70 22.68
104 1.18 18.75 19.15 19.70 20.90 21.88
105 1.16 17.83 18.25 18.85 20.10 21.13
106 1.15 16.90 17.30 18.00 19.30 20.38
107 1.14 15.98 16.53 17.15 18.53 19.63
108 1.13 15.10 15.60 16.33 17.75 18.90
109 1.12 14.23 14.75 15.50 17.03 18.18
110 1.11 13.33 13.98 14.70 16.28 17.35
111 1.10 12.45 13.10 13.93 15.53 16.65
112 1.09 11.63 12.30 13.18 14.80 16.00
113 1.08 10.78 11.50 12.40 14.10 15.35
114 1.07 9.95 10.80 11.65 13.40 14.63
115 1.06 9.18 9.98 10.93 12.70 13.98
116 1.05 8.40 9.30 10.23 12.03 13.33
117 1.04 7.68 8.58 9.53 11.35 12.73
118 1.04 6.93 7.85 8.83 10.73 12.05
119 1.03 6.23 7.20 8.18 10.10 11.45
120 1.02 5.58 6.58 7.55 9.50 10.85
121 1.01 4.95 5.93 6.93 8.90 10.33
122 1.00 4.35 5.35 6.35 8.33 9.75
123 0.99 3.80 4.80 5.78 7.78 9.23
124 0.99 3.25 4.23 5.23 7.23 8.63
125 0.98 2.74 3.75 4.73 6.73 8.15
126 0.97 2.28 3.25 4.23 6.23 7.63
127 0.96 1.90 2.79 3.78 5.73 7.15
128 0.95 1.52 2.37 3.35 5.28 6.70

Table 6.6: DJX option prices

6.1.3 Dividends

We cannot talk about option pricing without talking about dividend. Stocks

used to pay dividends. A dividend is a cash payment made to the owner

of a stock. In this paragraph, we assume that the stock pays a continuous

compound dividend yield at a rate q per annum. Clearly, if our asset is an

index, the dividend yield is the average of the dividend yields on the stocks

comprising the index. A dividend can be paid once a year or more frequently.

When a dividend is paid, the stock price goes down by the amount of the

dividend. Quotes of already paid dividends are available on every financial

website or newspaper. However, for option pricing, we need to quantify the

amount of cash (dividend) that an owner of a stock can expect to receive until

maturity. Clearly, being an expected value, it is not directly available on the
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market. Some websites are expert in expected dividend calculation but we

prefer not to use those, often too obscure, methods.

Rather, as futures quotes for various maturities are available on the market,

we determine dividend yields from futures prices. For an asset with price S0

paying a continuous (dividend) yield q per annum, r being the risk-free rate,

the forward (future) price of that asset is then given by

F0 = S0e
(r−q)T (6.1)

where T is the maturity of the forward (future) contract.

As S0, F0, r and T are directly available on the market, we can easily retrieve

the expected dividend yields q for various maturities. If option maturity falls

between two future maturities, we simply calculate q by interpolation.

In the following table (see Table (6.7)), we enter the future prices of the four

indices for various maturities. In a second column, we give the respective free-

risk interest rates for each maturity. Finally, in a third column, we can write

the total discount factor to use for option pricing as a difference between the

risk-free interest rate and the dividend rate.

6.2 The Black-Scholes Results

The main purpose of this thesis is to demonstrate that the classic Black-Scholes

model fails in modeling option prices and that some Lévy processes, after

accurate calibration, can almost perfectly reproduce the option prices and the

volatility surface. The first task before calibrating the Lévy models is to price

options for various strikes and maturities with the Black-Scholes model (using

the historical volatility as an input) and compare them with the real prices
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Date Price Dis. Fac. (r − q)

SPX Spot 1327.16
Apr08 1328.15 0.58%
May08 1328.61 0.53%
Jun08 1328.96 0.45%
Sep08 1329.06 0.26%
Dec08 1327.58 0.04%

RUT Spot 680.73
Apr08 681.60 0.98%
May08 682.02 0.91%
Jun08 682.44 0.82%
Sep08 683.09 0.62%

DJX Spot 122.22
Apr08 122.34 0.74%
May08 122.39 0.67%
Jun08 122.45 0.61%
Sep08 122.49 0.39%
Dec08 122.40 0.18%

NDX Spot 1725.52
Apr08 1731.14 2.49%
May08 1734.31 2.44%
Jun08 1738.17 2.39%
Sep08 1747.14 2.23%

Table 6.7: Discount factor (r-q) to use as an input for option pricing calculated
from future prices.

10 days 20 days 30 days
DJX 18.99% 19.49% 21.03%
NDX 18.47% 22.95% 23.22%
RUT 23.80% 26.24% 27.12%
SPX 19.46% 20.65% 22.30%

Table 6.8: Historical volatilities used as an input in the Black-Scholes model.

observed in the market.

From the graphics, we can deduce that the Black-Scholes model clearly

doesn’t fit option market prices. The volatility used as an input is the historical

volatility of the indexes during the last 10 days. We also used the historical

volatility at 20 and 30 days (see table (6.8)) but the results are similar. We

could calibrate the σ parameter with option market prices but we still get a

really bad fitting.
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Figure 6.7: Option market prices on 03/03/2008 for DJX (rings) and prices
given by the Black-Scholes model (stars).

Figure 6.8: Option market prices on 03/03/2008 for NDX (rings) and prices
given by the Black-Scholes model (stars).
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Figure 6.9: Option market prices on 03/03/2008 for RUT (rings) and prices
given by the Black-Scholes model (stars).

Figure 6.10: Option market prices on 03/03/2008 for SPX (rings) and prices
given by the Black-Scholes model (stars).
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6.3 Estimation Methods: Non-Linear Least-

Squares

In the models we develop earlier, parameters estimation is not an easy task.

The likelihood functions are not known in closed form for continuous-time Lévy

models, since the observations are discrete. So the maximum likelihood method

is very difficult to implement. One can use the underlying stock prices only to

estimate the structural parameters. Indirect inference method is first proposed

by Gourieroux, Monfort, and Renault (1993). This method is a simulation

based moment matching method. Frequently used methods for Lévy models

include the generalized method-of-moments (GMM) developed by Hansen and

Scheinkman (1995), and the efficient method-of-moments (EMM) proposed by

Gallant and Tauchen (1996). But in practice, it is not convenient to employ

these econometric tools. An alternative and popular method is to use option

prices directly. The procedure is simple. First, we collect N options on the

same stock in the same day. These options have different time to maturities

and strike prices. Let cMarket
i be the price of the i-th option, and cModel

i be

its price determined by the model. The parameter set θ is then determined

minimizing the following expression

N∑
i=1

(
cMarket
i − cModel

i,θ

)2
(6.2)

that is to say, the objective consists of finding the minimum value of a sum

of N squared residuals (difference between market prices and prices obtained

with the model) with respect to a set of n parameters of a model.

θ̂ = arg min
θ

N∑
i=1

(
cMarket
i − cModel

i,θ

)2
(6.3)
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6.3.1 Gradient Descent

Gradient descent is an optimization algorithm. To find a local minimum of

a function using gradient descent, one takes steps proportional to the minus

gradient (or the approximate gradient) of the function at the current point.

The gradient descent method is based on the observation that if the real-valued

function f(x) is defined and differentiable in a neighborhood of a point x0 then

f(x) decreases fastest if one goes from x0 in the direction of the minus gradient

of f at x0, that is:

x1 = x0 − ε∇f(x0). (6.4)

Choosing ε > 0 small enough whe have f(x0) ≥ f(x1). With this observation

in mind, one starts with an initial guess x0 for a local minimum of f , and

generates the sequence x0, x1, x2, . . . using the following equation:

xn+1 = xn − ε∇f(xn), n = 0, 1, 2, . . . . (6.5)

When the gradient tends to zero, that means that the slope goes to zero and we

get an approximation of a local minimum. The value of the step size ε is fixed

previously but it is also allowed to change at every iteration deterministically

or stochastically.

Obviously, in our case, the function f to minimize is the difference between

the market and model prices, and the point x0 starting with is a vector con-

taining a first guess of the model parameters. As we don’t know the analytic

form of the function f , we have to approximate its gradient with the finite-

difference gradient. Thus, each component of the gradient can be approximate

by the following expression

∂f(x)

∂x
=
f(x+ h)− f(x)

h
(6.6)
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Figure 6.11: An example of the Gradient Descent procedure.

where h > 0 determines the step of the finite-difference gradient procedure.

In the gradient descent algorithm, we thus have to determine two step sizes, h

which is, as explained before, the finite-difference procedure step, and ε, which

should be chosen larger than h, and represent the step size of the gradient

descent procedure.

6.4 Results

For all the models we talked about in chapter 4, we tried to calibrate the pa-

rameters to the four index option sets (DJX, NDX, RUT and SPX). We fix

the h parameter low to get a good finite-differences approximation. The major

problem is to fix the ε parameter and the tolerance, that is to say, the value

we consider small enough to represent a minimum.

We look for initial parameters by plotting both market and model prices and

trying manually to get a good fitting by varying the parameters. We use those

initial parameters as a first guess. The best way to begin is to fix a very small
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value for ε (around 1−7) and a quite big tolerance for the global square error.

When the tolerance is reached, we update the initial parameters in the pro-

gram with the new parameters, we decrease the tolerance and, step by step,

we can also increase the value of ε .

With this procedure, we can get good fitting using all the models. However,

since the gradient descent algorithm can easily find a local minimum, we can-

not know if this minimum is also the global minimum. In that sense, the

parameters we find with the algorithm are highly linked with the initial pa-

rameters we “guessed”.

In Figures (6.14 - 6.19) we plotted the market and model prices (calculated

with the parameters found after calibration) for all the strikes and maturities.

It is difficult to say if a model works better than other. A model can work

better on a dataset and worse on another. However, we found that NIG and

VG models are easier to calibrate than JD and DE models since the global

error decline rapidly (to reach 1e−4 for all the dataset) and all the parameters

vary simultaneously from the initial ones during the calibration. In JD and DE

cases, even when we start from initial parameters that seem adequate (from a

graphical point of view), the global error often stops improving (never below

1e−3 for all the dataset) and one parameter moves significantly while the other

ones keep their initial value or move slightly around. Probably this fact is

imputable to the flatness of the objective function in that point.

The problems we encounter when calibrating the models are also due to

the fact that we have a significant number of options for various strikes and

maturities and the function to calibrate is thus quite tricky. When trying to
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Figure 6.12: Option market prices on 03/03/2008 for DJX (left) and NDX
(right) (rings) and prices given by the Jump-Diffusion model (stars).

Figure 6.13: Option market prices on 03/03/2008 for RUT (left) and SPX
(rings) and prices given by the Jump-Diffusion model (stars).
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Figure 6.14: Option market prices on 03/03/2008 for DJX (left) and NDX
(right) (rings) and prices given by the Double-Exponential model (stars).

Figure 6.15: Option market prices on 03/03/2008 for RUT (left) and SPX
(right) (rings) and prices given by the Double-Exponential model (stars).
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Figure 6.16: Option market prices on 03/03/2008 for DJX (left) and NDX
(right) (rings) and prices given by the NIG model (stars).

Figure 6.17: Option market prices on 03/03/2008 for RUT (left) and SPX
(rings) and prices given by the NIG model (stars).
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Figure 6.18: Option market prices on 03/03/2008 for DJX (left) and NDX
(right) (rings) and prices given by the Variance-Gamma model (stars).

Figure 6.19: Option market prices on 03/03/2008 for RUT (left) and SPX
(rings) and prices given by the Variance-Gamma model (stars).
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Figure 6.20: Option market prices on 03/03/2008 for RUT June ’08 option
prices (left) and NDX May 08’ option prices (rings) and prices given by the
NIG model (left) and the Variance-Gamma model (right) (stars).

calibrate a model for just one maturity (that is to say just one range of strikes)

we obtain a perfect calibration (see Figure (6.20)). We chose to calibrate the

NIG model to the June ’08 RUT options (110 days to maturity) and the VG

model to the May ’08 NDX options (75 days to maturity). As we can see on

the figure, the model prices fit almost perfectly the market prices. In the NIG

case, we reach a 1.5e−5 global square error and 3.0e−7 in the VG case. The

mean error per option is 0.74% in the NIG case and 0.10% for the VG.

Thus, using these four Lévy models, we clearly observe a significant improve-

ment with respect to the Black-Scholes model. We can conclude that the

more flexible distributions as JD, DE, NIG and VG are more suitable than the

Normal distribution.



Conclusion

In the first part of the thesis, we introduced some exponential Lévy processes

used for option pricing, giving their foremost mathematical properties. Then,

we computed option pricing with Fourier Transform methods, based on the

knowledge of the characteristic function, performing the FRFT algorithm. Fi-

nally we calibrated the model parameters to option market prices with the

non-linear least-squares method performing the gradient descent algorithm to

find a minimum.

Using an exponential Lévy model we obtained a much better fitting in com-

parison with the Black-Scholes model (using a single volatility parameter).

Indeed, when we calibrate the prices of a set of options over just one maturity,

we get high precision approximations. However, it seems almost impossible

to calibrate accurately the prices of stock index options of several maturities

at the same time. Even starting from various initial parameter sets, the al-

gorithm never reaches a satisfactory minimum (with all the four models, even

if worse with jump-diffusion types) and in the mean, we obtain an error be-

tween 0.5% and 1.5% for each option price (that error can reach 60% for some

strikes and maturities). The framework of exponential Lévy models seems not

to be sufficiently flexible to reproduce the term structure of implied volatilities

correctly. Surely, a much better method to reach this goal could be the use
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of models including both jumps and stochastic volatility. The study of these

hybrid models, and particularly the methods used to perform pricing and cal-

ibration under these latters, could be a possible extension of this work.

In this thesis, we didn’t talk at all about two fundamental topics in financial

modeling: pricing of exotic options and hedging. The former is one of the first

purposes of option pricing models, especially Lévy models. In fact, the model

calibration aim is getting an estimate on the parameters implied in vanilla

option prices (available as an exchange quotation) in order to price exotic

OTC products with non-vanilla payoffs (as Barrier or Asian options). Very

often, pricing of exotic options under Lévy processes is made through Monte

Carlo methods, but there also exist numerical methods resolving the associate

partial differential equations.

On the other hand, when dealing with options and particularly with exotic

ones, hedging is a topic at least as important as pricing if no more. Giving the

risk produced by a derivative product, being able to calculate and control this

risk is the purpose of a lot of models.

Accordingly, exotic option pricing and hedging could be two possible extensions

based on the results of this thesis.
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Appendix A

Matlab Code

In this appendix, we insert all the Matlab code we have written to realize

the simulations, pricing and calibration.

All the code in this appendix can be downloaded from:

http://ddeville.110.mb/thesis/

Box-Muller algorithm: BoxM.m

function [A,B] = BoxM(a,b)

U = rand;

V = rand;

E = -2*log(U);

A = sqrt(E)*cos(2*pi*V);

B = sqrt(E)*sin(2*pi*V);

A = a + sqrt(b)*A;

B = a + sqrt(b)*B;

Brownian motion with drift µ and volatility σ: Brownian Motion.m

function Brownian_Motion(mu,sigma)

T = 1;

N = 5000;

h = T/N; t = (0:h:T);

X(1) = 0;
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for i=1:N

X(i+1) = X(i) + mu*h + sigma*sqrt(h)*randn;

end

plot(t,X)

Sample path under the Black-Scholes model: Black Scholes.m

function Black_Scholes(r,sigma,S0,T)

mu = r - 0.5*sigma*sigma;

N = 5000;

h = T/N; t = (0:h:T);

X(1) = 0;

for i=1:N

X(i+1) = X(i) + mu*h + sigma*sqrt(h)*randn;

end

S = S0*exp(X);

plot(t,S)

Poisson generator: exponential inter-arrival times: pssrnd1.m

function y = pssrnd1(lambda)

X = 0;

Sum = 0;

flag = 0;

while flag == 0

E = -log(rand);

Sum = Sum + E;

if Sum < lambda

X = X + 1;

else

flag = 1;

end

end

y = X;

Poisson generator: multiplication of uniform random variable: pssrnd2.m

function y = pssrnd2(lambda)

X = 0;
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Prod = 1;

EE = exp(-lambda);

flag = 0;

while flag == 0

U = rand;

Prod = Prod*U;

if Prod > EE

X = X + 1;

else

flag = 1;

end

end

y = X;

Poisson generator: inversion by sequential search: pssrnd3.m

function y = pssrnd3(lambda)

X = 0;

Sum = exp(-lambda);

Prod = exp(-lambda);

U = rand;

while U > Sum

X = X + 1;

Prod = Prod*(lambda/X);

Sum = Sum + Prod;

end

y = X;

Poisson process with parameter λ: PSS Process.m

function PSS_Process(lambda)

% It requires the function pssrnd1.m

T = 1;

N = 10000;

h = T/N;

t = (0:h:T);

I = zeros(N,1);

X = zeros(N+1,1); X(1) = 0;
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for i = 1:N

I(i) = pssrnd1(h*lambda);

X(i+1) = X(i) + I(i);

end

plot(t,X)

Compensated Poisson process with parameter λ: CPS PSS Process.m

function CPS_PSS_Process(lambda)

% It requires the function pssrnd1.m

T = 1;

N = 5000;

h = T/N; t = (0:h:T);

I = zeros(N,1);

X = zeros(N+1,1); X(1) = 0;

for i = 1:N

I(i) = pssrnd1(h*lambda);

X(i+1) = X(i) -lambda*h + I(i);

end

plot(t,X)

Compound Poisson process with parameter λ and Gaussian distribution of

jump sizes: CPD PSS Process.m

function CPD_PSS_Process(lambda)

% It requires the function pssrnd1.m

T = 1;

N = 5000;

h = T/N; t = (0:h:T);

I = zeros(N,1);

X = zeros(N+1,1); X(1) = 0;

F = zeros(N+1,1);

for i = 1:N

I(i) = pssrnd1(h*lambda);

if I(i) == 0;

F(i) = 0;

else F(i) = randn;

end
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X(i+1) = X(i) + F(i);

end

plot(t,X)

Merton Normal Jump-Diffusion with parameters µ, σ, λ, A and B:

JD N Process.m

function JD_N_Process(mu,sigma,lambda,A,B)

% It requires the function pssrnd1.m

T = 1;

N = 5000;

h = T/N; t = (0:h:T);

I = zeros(N,1);

X = zeros(N+1,1); X(1) = 0;

F = zeros(N+1,1);

for i = 1:N

I(i) = pssrnd1(h*lambda);

if I(i) == 0;

F(i) = 0;

else F(i) = A*I(i) + sqrt(B)*sqrt(I(i))*randn;

end

X(i+1) = X(i) + mu*h + sigma*sqrt(h)*randn + F(i);

end

plot(t,X)

Kou Double Exponential Jump-Diffusion with parameters µ, σ, λ, p, η1

and η2: JD DE Process.m

function JD_DE_Process(mu,sigma,lambda,p,eta1,eta2)

% It requires the functions pssrnd1.m and Gamma1.m

T = 1;

N = 5000;

h = T/N; t = (0:h:T);

I = zeros(N,1);

X = zeros(N+1,1); X(1) = 0;

F = zeros(N+1,1);

for i = 1:N
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I(i) = pssrnd1(h*lambda);

if I(i) == 0;

F(i) = 0;

else K = binornd(I(i),p);

R1 = Gamma1(K*eta1,eta2);

R2 = Gamma1((I(i)-K)*eta1,eta2);

F(i) = R1 - R2;

end

X(i+1) = X(i) + mu*h + sigma*sqrt(h)*randn + F(i);

end

plot(t,X)

Inverse Gaussian generator from Michael, Schucany and Hass’ algorithm

(Devroye): IG1.m

function y = IG1(a,b)

N = randn;

Y = N*N;

X1 = (a/b) + Y/(2*b*b) - (sqrt(4*a*b*Y + Y*Y))/(2*b*b);

U = rand;

if U <= (a/(a+X1*b))

X = X1;

else X = (a*a)/(b*b*X1);

end

y = X;

Inverse Gaussian generator from Michael, Schucany and Hass’ algorithm

(Glasserman): IG2.m

function y = IG2(a,b)

C = 1/b;

D = C*a;

D = D*D;

Norm = randn;

V = Norm*Norm;

eps = C*V;

Y = C*(a+(eps/2) + sqrt(eps*(a+(eps/4))));
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p = a/(a+b*Y);

U = rand;

if U > p

Y = D/Y;

end

y = Y;

Sample path of an IG process with parameters a and b: IG Process.m

function IG_process(a,b)

% It requires the function IG2.m

T = 1;

N = 1000;

h = T/N; t = (0:h:T);

g = zeros(N,1);

G = zeros(N+1,1); G(1) = 0;

for i = 1:N

g(i) = IG2(a*h,b);

G(i+1) = G(i) + g(i);

end

plot(t,G)

Sample path of a NIG process with parameters α, β and δ by Brownian

subordination: NIG Sub Brown.m

function NIG_Sub_Brown(alpha,beta,delta)

% It requires the function IG2.m

a = 1;

b = delta*sqrt(alpha*alpha - beta*beta);

T = 1;

N = 1000;

h = T/N; t = (0:h:T);

I = zeros(N,1);

X = zeros(N+1,1); X(1) = 0;

for i = 1:N

I(i) = IG2(a*h,b);

X(i+1) = X(i) + beta*delta*delta*I(i)

+ delta*sqrt(I(i))*randn;
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end

plot(t,X)

Gamma random numbers generator with Ahrens-Dieter and Fishman’s al-

gorithms: Gamma1.m

function y = Gamma1(a,b)

if a == 0;

answ = 0;

elseif a <= 1

answ = gamma1(a);

else

answ = gamma2(a);

end

y = answ/b;

% Ahrens-Dieter’s Gamma generator (if a<=1)

function y = gamma1(a)

e = exp(1);

c = (a+e)/e;

flag = 0;

while flag == 0

U1 = rand;

U2 = rand;

Y = c*U1;

if Y<=1

Z = Y^(1/a);

if U2<exp(-Z)

flag = 1;

end

else Z = -log((c-Y)/a);

if U2<=Z^(a-1)

flag = 1;

end

end

end

y = Z;
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% Fishman (Cheng and Feast)’s Gamma generator (if a>1)

function y = gamma2(a)

a2 = a-1;

c = (a-(1/(6*a)))/a2;

m = 2/a2;

d = m+2;

flag = 0;

while flag == 0

U1 = rand;

U2 = rand;

V = c*U2/U1;

if m*U1-d+V+(1/V)<=0

flag = 1;

elseif m*log(U1)-log(V)+V-1<=0

flag = 1;

end

end

y = a2*V;

Gamma random numbers generator with Johnk and Best’s algorithms:

Gamma2.m

function y = Gamma2(a,b)

if a == 0;

answ = 0;

elseif a <= 1

answ = gamma1(a);

else

answ = gamma2(a);

end

y = answ/b;

% Johnk’s Gamma generator (if a<=1)

function y = gamma1(a)

X = 0;

Y = 0;

while X + Y <= 1

U = rand;
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V = rand;

X = U^(1/a);

if a == 1

Y = 1;

else Y = V^(1/(1-a));

end

end

E = (-log(rand));

y = (X*E)/(X+Y);

% Best’s Gamma generator (if a>1)

function y = gamma2(a)

d = a-1;

c = 3*a - 3/4;

ifl = 0;

while(ifl == 0)

U = rand;

V = rand;

W = U*(1-U);

Y = sqrt(c/W)*(U-0.5);

X = d + Y;

Z = 64*W^3*V^3;

if(log(Z)<=2*(d*log(X/d)-Y))

if(X>0)

ifl = 1;

end

end

end

y = X;

Gamma random numbers generator with Berman and Best’s algorithms:

Gamma3.m

function y = Gamma3(a,b)

if a == 0;

answ = 0;

elseif a <= 1

answ = gamma1(a);
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else

answ = gamma2(a);

end

y = answ/b;

% Berman’s Gamma generator (if a<=1)

function y = gamma1(a)

X = 0;

Y = 0;

while X + Y <= 1

U = rand;

V = rand;

X = U^(1/a);

if a == 1

Y = 1;

else Y = V^(1/(1-a));

end

end

U = rand;

V = rand;

y = -X*log(U*V);

% Best’s Gamma generator (if a>1)

function y = gamma2(a)

d = a-1;

c = 3*a - 3/4;

ifl = 0;

while(ifl == 0)

U = rand;

V = rand;

W = U*(1-U);

Y = sqrt(c/W)*(U-0.5);

X = d + Y;

Z = 64*W^3*V^3;

if(log(Z)<=2*(d*log(X/d)-Y))

if(X>0)

ifl = 1;

end
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end

end

y = X;

Sample path of a Gamma process with parameters a and b: Gamma Process.m

function Gamma_process(a,b)

% It requires the function Gamma1.m

T = 1;

N = 1000;

h = T/N; t = (0:h:T);

g = zeros(N+1,1);

G = zeros(N+1,1); G(1) = 0;

for i = 1:N

g(i) = Gamma1(a*h,b);

G(i+1) = G(i) + g(i);

end

plot(t,G)

Sample path of a Variance Gamma process with parameters σ, ν and θ by

Brownian Subordination: VG Sub Brown.m

function VG_Sub_Brown(sigma,nu,theta)

% It requires the function Gamma1.m

a = 1/nu;

b = 1/nu;

T = 1;

N = 1000;

h = T/N; t = (0:h:T);

X = zeros(N+1,1);

I = zeros(N+1,1);

for i = 1:N

I(i) = Gamma1(a*h,b);

X(i+1) = X(i) + theta*I(i) + sigma*sqrt(I(i))*randn;

end

plot(t,X)

Sample path of a Variance Gamma process with parameters C, G and M

as the difference of two Gamma processes: VG Diff Gamma.m
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function VG_Diff_Gamma(C,G,M)

% It requires the function Gamma1.m

a1 = C; b1 = M;

a2 = C; b2 = G;

T = 1;

N = 1000;

h = T/N; t = (0:h:T);

G1 = zeros(N+1,1); G2 = zeros(N+1,1);

VG = zeros(N+1,1);

for i = 1:N

G1(i+1) = G1(i) + Gamma1(a1*h,b1);

G2(i+1) = G2(i) + Gamma1(a2*h,b2);

VG(i+1) = G1(i) - G2(i);

end

plot(t,VG)

Function to convert the σ, ν, θ parameters of the VG process into the

C,G,M parameters: Change VG.m

function Change_VG(sigma,nu,theta)

C = 1/nu;

G = (sqrt(0.25*theta*theta*nu*nu+0.5*sigma*sigma*nu)

-0.5*theta*nu)^(-1);

M = (sqrt(0.25*theta*theta*nu*nu+0.5*sigma*sigma*nu)

+0.5*theta*nu)^(-1);

fprintf(’\t%+6.4f \t\n’,C);

fprintf(’\t%+6.4f \t\n’,G);

fprintf(’\t%+6.4f \t\n’,M);

The Merton Series Expansion: MertonSerie.m

function Value = MertonSerie(S, K, r, T, sigma, lambda,

jumpa, jumpb, MaxIter)

Value = 0;

lambdabis = lambda*exp(jumpa + 0.5*jumpb^2);

for i = 0:MaxIter

Vi = sqrt(sigma^2 + (i*jumpb^2)/T);

ri = r + (i/T)*(jumpa+0.5*jumpb^2)-lambda*(exp(jumpa



164 Matlab Code

+ 0.5*jumpb^2)-1);

Value = Value + (exp(-lambdabis * T) * (lambdabis *

T) ^ i / factorial(i)) * bs(S, K, ri, Vi, T);

end

function call = bs(S, K, r, sigma, t)

d1 = ( log(S./K)+( r + .5*sigma.^2 ).*t ) ./ sigma./sqrt(t);

d2 = d1 - sigma.*sqrt(t); n1 = normcdf(d1); n2 = normcdf(d2);

call = S.*n1 - K.*n2.*exp(-r.*t);

Functions that define the characteristic functions and ψ functions (see Carr

and Madan, 1999) for Black-Scholes model, Merton Jump-Diffusion model,

Kou Double-Exponential Jump-Diffusion model, Variance Gamma and Normal

Inverse Gaussian.

Black-Scholes model: BS CF.m and Psi BS CF.m

function y = BS_CF(u, sigma, r, t)

% Computes the characteristic function for

% the Black-Scholes model

drift = r - 0.5*sigma^2;

y = exp(i*drift*t*u - 0.5*sigma^2*u.^2*t);

function y = Psi_BS_CF(u, sigma, r, t, a)

% computes the Psi function (modified call, Carr-Madan, 1999)

y1 = BS_CF(u - i*(a+1), sigma, r, t);

y2 = a^2 + a - u.^2 + i*(2*a+1)*u;

y = exp(-r*t) * y1 ./ y2;

Merton Jump-Diffusion model: JD CF.m and Psi JD CF.m

function y = JD_CF(u, sigma, lambda, jumpa, jumpb, r, t)

% Computes the characteristic function for the Jump-Diffusion model

drift = r - 0.5*sigma^2 - lambda*(exp(jumpa+0.5*jumpb^2)-1);

y = exp(i*drift*t*u - 0.5*sigma^2*u.^2*t + t*lambda*(exp(i *

jumpa*u - 0.5*jumpb^2*u.^2)-1));
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function y = Psi_JD_CF(u, sigma, lambda, jumpa, jumpb, r, t, a)

% computes the Psi function (modified call, Carr-Madan, 1999)

y1 = JD_CF(u - i*(a+1), sigma, lambda, jumpa, jumpb, r, t);

y2 = a^2 + a - u.^2 + i*(2*a+1)*u;

y = exp(-r*t) * y1 ./ y2;

Kou Double-Exponential Jump-Diffusion: DE CF.m and Psi DE CF.m

function y = DE_CF(u, sigma, lambda, prob, eta1, eta2, r, t)

% Computes the characteristic function for the

% Jump-Diffusion model

drift = r - 0.5*sigma^2 - lambda*(((prob*eta1)/(eta1+1))+

((1-prob)*eta2/(eta2+1))-1);

y = exp(i*u*drift*t - 0.5*sigma^2*u.^2*t + t*lambda*((prob*

eta1)./(eta1+u*i) + ((1-prob)*eta2)./(eta2+u*i) - 1 ));

function y = Psi_DE_CF(u,sigma,lambda,prob,eta1,eta2,r,t,a)

% computes the Psi function (modified call, Carr-Madan, 1999)

y1 = DE_CF(u - i*(a+1), sigma, lambda, prob, eta1, eta2, r, t);

y2 = a^2 + a - u.^2 + i*(2*a+1)*u;

y = exp(-r*t) * y1 ./ y2;

Variance Gamma: VG CF.m and Psi VG CF.m

function y = VG_CF(u, sigma, theta, nu, r, t)

% Computes the characteristic function for the

% Variance-Gamma model

drift = r + log(1-theta*nu-0.5*sigma^2*nu)/nu;

y = exp(i*drift*t*u) .* ((1-i*nu*theta*u+0.5*nu

*sigma^2*u.^2).^(-t/nu));

function y = Psi_VG_CF(u, sigma, theta, nu, r, t, a)

% computes the Psi function (modified call, Carr-Madan, 1999)

y1 = VG_CF(u - i*(a+1), sigma, theta, nu, r, t);

y2 = a^2 + a - u.^2 + i*(2*a+1)*u;

y = exp(-r*t) * y1 ./ y2;

Normal Inverse Gaussian: NIG CF.m and Psi NIG CF.m
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function y = NIG_CF(u, delta, alph, beta, r, t)

% Computes the characteristic function for the NIG model

drift = r + delta*(sqrt(alph^2-(beta+1)^2)-

sqrt(alph^2-beta^2));

y = exp(i*u*drift*t - delta*t*(sqrt(alph^2-(beta+i*u).^2)

- sqrt(alph^2-beta^2)));

function y = Psi_NIG_CF(u, delta, alph, beta, r, t, a)

% computes the Psi function (modified call, Carr-Madan, 1999)

y1 = NIG_CF(u - i*(a+1), delta, alph, beta, r, t);

y2 = a^2 + a - u.^2 + i*(2*a+1)*u;

y = exp(-r*t) * y1 ./ y2;

Function that computes the FFT procedure to find an option price with

the jump-diffusion model: JD FFT.m

function JD_FFT

% It requires the function JD_CF and Psi_JD_CF

% Model parameters:

sigma = 0.25; % Volatility

r = 0.05; % Risk-free rate

t = 0.25; % Time to maturity

lambda = 0.1; % Jump/year

jumpa = -0.05; % Mean jump

jumpb = 0.3; % Jump volatility

S = 1; % Initial stock price

eprice = 1; % Strike price

% Model parameter set

params = [sigma, lambda, jumpa, jumpb, r, t];

% Definition of the integration grid:

N = 4096; % Number of FFT points

a = 1024; % Upper integration bound (0,+a)

alpha = 2.5; % Dampening factor (hint: 4)

% Outputs

% K : Set of strikes

% Y : Set of option prices
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[K, Y] = JD_FFT_PRICES(S,params, N, a, alpha);

% We compute the option price for the given strike price

% by interpolation:

j=1;

while K(j)<eprice

j=j+1;

end

option = ((Y(j)-Y(j-1))*(eprice-K(j-1)))/(K(j)-K(j-1))+Y(j-1);

fprintf(’\n\nFFT Price:\n’); fprintf(’%+6.4f\n’,option);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Functions that compute the program %%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [K, Y] = JD_FFT_PRICES(S, params, N, a, alpha)

% Parameters for the CF grid (0,a)

delta = a/N; % Integration grid spacing

lamb = (2*pi)/(N*delta); % Log-strikes grid spacing

x0 = -N*lamb/2; % 1st pt of the log-strikes grid

% Creation of the grid

u = (0:N-1) * delta; % Support for integration

x = x0 + (0:N-1) * lamb; % Support for log-strikes

% Application of the rules on the grid

h = Psi_CF(u, params, alpha); % Psi function values

% on the integration grid

h2 = delta * exp(-i*x0*u) .* h; % Function to integrate

TR = [0.5 ones(1,N-2) 0.5]; % Trapezoid rule

h3 = h2 .* TR; % Apply rule

g = fft(h3); % Application of the FFT

g2 = real(exp(-alpha*x)/pi.*g); % Normalized prices

% Compute output values

K = S * exp(x);

Y = S * g2;
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Function that computes the FRFT procedure to find an option price with

the Variance-Gamma model: VG FRFT.m

function VG_FRFT

It requires the functions CF_VG and Psi_VG_CF

% Model parameters:

sigma = 0.30; % Volatility

r = 0.05; % Risk-free rate

t = 0.25; % Time to maturity

theta = -0.20;

nu = 0.20;

S = 1; % Initial stock price

eprice = 1; % Strike price

% Model parameter set

params = [sigma, theta, nu, r, t];

% Definition of the integration grid:

N = 128; % Number of FFT points

a = 140; % Upper integration bound (0,+a)

b = 0.3; % Bounds for log-prices (-b,+b)

alpha = 2.5; % Dampening factor (hint: 4)

% Outputs

% K : Set of strikes

% Y : Set of option prices

[K, Y] = VG_FRFT_PRICES(S,params, N, a, b, alpha);

% We compute the option price for the given strike price by

% interpolation:

j=1;

while K(j)<eprice

j=j+1;

end

option = ((Y(j)-Y(j-1))*(eprice-K(j-1)))/(K(j)-K(j-1))+Y(j-1);

fprintf(’\n\nFRFT Price:\n’); fprintf(’%+6.4f\n’,option);
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Functions that compute the program %%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [K, Y] = VG_FRFT_PRICES(S, params, N, a, b, alpha)

% Parameters for the CF grid (0,a)

delta = a/N; % Integration grid spacing

lamb = 2*b/N; % Log-strikes grid spacing

x0 = -b; % 1st pt of the log-strikes grid

eps = 0.5*lamb*delta/pi; % Fractional parameter

% Creation of the grid

u = (0:N-1) * delta; % Support for integration

x = x0 + (0:N-1) * lamb; % Support for log-strikes

% Application of the rules on the grid

h = Psi_CF(u, params, alpha); % Psi function values

% on the integration grid

h2 = delta * exp(-i*x0*u) .* h; % Function to integrate

TR = [0.5 ones(1,N-2) 0.5]; % Trapezoid rule

h3 = h2 .* TR; % Apply rule

g = FRFT(h3, eps); % Application of the FRFT routine

g2 = real(exp(-alpha*x)/pi.*g); % Normalized prices

% Compute output values

K = S * exp(x);

Y = S * g2;

function f = FRFT(x, a)

% Performs the Fractional FFT on a vector ’x’ with

% fractional parameter ’a’

% From Chourdakis

m = size(x,2);

% Auxilliary vectors

y = zeros(1,2*m);

y(1,1:m) = x .* exp( - pi*i*a * (0:(m-1)).^2 );

z = zeros(1,2*m);

z(1,1:m) = exp( pi*i*a * (0:(m-1)).^2 );

z(1,m+1:2*m) = exp( pi*i*a * ( (m:(2*m-1)) - 2*m).^2 );

% The three (I)FFTs

fy = fft(y); fz = fft(z); fyz = fy .* fz; ifyz = ifft(fyz);
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Figure A.1: NDX.xls file containing the NDX strike and market prices.

Figure A.2: NDX T.xls file containing NTX maturities and discount factors.

f = exp( - pi*i*a * (0:(m-1)).^2 ) .* ifyz(1,1:m);

Function that first loads market prices (in this case NDX) from a .xls file

(see Figures (A.1) and (A.2)) and calibrates the model parameters (in this

case NIG) to the market prices performing a non-linear least-square procedure

with the gradient descent algorithm: cal NIG NDX.m

function cal_NIG_NDX(alph,beta,delta)

% It requires the function NIG_FRFT.m

% The required parameters in input are

% the initially guessed parameters.

par = [alph,beta,delta];
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par_new = par;

Spot = 1725.52; % Spot NDX price

OP = xlsread(’NDX.xls’); % We load NDX option prices

TD = xlsread(’NDX_T.xls’); % We load NDX option maturities

% We ordinate and organize the inputs:

[no,mo] = size(OP);

strike = OP(:,1)/Spot; % Strike prices vector

C_mark = OP(:,2:mo)/Spot; % Option prices matrix

t = (1/360)*TD(:,1); % Maturites vector

r = TD(:,2); % Interest-rate vector

S=1; % We fix S=1 and get everyting in function of S.

% Indexation:

error=zeros(1,100000);

error(1) = Psi(par,C_mark,S,strike,r,t);

itmax = 100000; % Iteration max

tol = 1e-4; % Error tolerance

% Steps:

hstep = 1e-2; % Gradient descent step

hstep1 = 1e-5; % Finite-Differences step

fprintf(’Initial values of parameters : \n’)

disp(par)

fprintf(’Press any key \n’)

pause

k = 1; ifl = 0;

while(ifl == 0)

k = k+1;

if(k > itmax)

ifl = 1;

end

if(error(k-1) < tol)

fprintf(’Calibrated parameters : \n’)
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disp(par)

ifl=1;

else

for j = 1:3

par_aux = par;

par_aux(j)=par_aux(j) + hstep1;

error_aux = Psi(par_aux,C_mark,S,strike,r,t);

grad(j)=(error_aux - error(k-1))/hstep1;

end

for j = 1:3

par_new(j) = par(j) - hstep*grad(j);

end

error(k) = Psi(par_new,C_mark,S,strike,r,t);

end

error(k);

par = par_new;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Functions that Compute the Program %%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Function that computes the error squares:

function y = Psi(par,C_mark,S,strike,r,t)

C_actual = NIGprice(par,S,strike,r,t); % Model prices

C_market = C_mark; % Market prices

y = (sum(sum(C_actual - C_market).^2)) % Function to minimize

% Calculation of Option prices with FRFT:

function y = NIGprice(par,S,strike,r,t)

alph = par(1); beta = par(2);

delta = par(3);

for i=1:4

for j=1:22

dc(i,j)=NIG_FRFT(S,strike(j),r(i),t(i),delta,alph,beta);

end

end

y = dc’;
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Function that plots the market and model (in this case Variance Gamma)

given the model parameters: Plot VG NDX.m

function Plot_VG_NDX(sigma,theta,nu)

% It requires the function VG_FRFT.m

% The required parameters in input are

% those found after calibration.

S = 1725.52; % Spot Price

OP = xlsread(’NDX.xls’); % We load NDX option prices

TD = xlsread(’NDX_T.xls’); % We load NDX option maturities

% We ordinate and organize the inputs:

[np,mp] = size(OP);

strike = OP(:,1); % Strike prices vector

C_mark = OP(:,2:mp); % Option prices matrix

[no,mo] = size(C_mark);

t = (1/365)*TD(:,1); % Maturites vector

r = TD(:,2); % Interest-rate vector

for i=1:mo

for j=1:no

option(i,j)=VG_FRFT(S,strike(j),r(i),t(i),sigma,theta,nu);

end

end

option = option’;

% We plot both market and model prices

plot(strike,C_mark,’o’,strike,option,’*’)

Function that calibrates the NIG model parameters to option market prices

on RUT with maturities June, 08, performing a non-linear least-square proce-

dure with the gradient descent algorithm: cal NIG RUT 110.m

function cal_NIG_RUT(alph,beta,delta)

% It requires the function NIG_FRFT.m
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% alph = -18.601;

% beta = -12.247;

% delta = 0.835;

% We load all the option data:

S = 680.73;

strike = (1/S)*[550 560 570 580 590 600 610 620 630 640 ...

... 650 660 670 680 690 700 710 720 730 740 750 760 770 780];

C_mark = (1/S)*[139.05 130.65 122.45 114.40 106.50 98.90 ...

... 91.45 84.15 77.25 70.45 63.95 57.55 51.65 46.05 40.90 ...

35.80 31.25 27.10 23.25 19.75 16.75 14.05 11.55 9.55];

strike = strike’;

C_mark = C_mark’;

t = 110/365;

r = 0.0082;

S=1;

par = [alph,beta,delta];

par_new = par;

error=zeros(1,100000);

error(1) = Psi(par,C_mark,S,strike,r,t);

itmax = 100000; % max iteration

tol = 1.5e-5; % error tolerance

hstep = 2;

hstep1 = 1e-5;

fprintf(’Initial values of parameters : \n’)

disp(par)

fprintf(’Press any key \n’)

pause

k = 1; ifl = 0;

while(ifl == 0)

k = k+1;

if(k > itmax)
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ifl = 1;

end

if(error(k-1) < tol)

fprintf(’Calibrated parameters : \n’)

disp(par)

ifl=1;

else

for j = 1:3

par_aux = par;

par_aux(j)=par_aux(j) + hstep1;

error_aux = Psi(par_aux,C_mark,S,strike,r,t);

grad(j)=(error_aux - error(k-1))/hstep1;

end

for j = 1:3

par_new(j) = par(j) - hstep*grad(j);

end

error(k) = Psi(par_new,C_mark,S,strike,r,t);

end

error(k);

par = par_new;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% Functions that compute the program %%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function y = Psi(par,C_mark,S,strike,r,t)

C_actual = NIGprice(par,S,strike,r,t);

C_market = C_mark;

y = sum((C_actual - C_market).^2)

function y = NIGprice(par,S,strike,r,t)

alph = par(1); beta = par(2);

delta = par(3);

for i=1:24

dc(i) = NIG_FRFT(S,strike(i),r,t,delta,alph,beta);

end
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y = dc’;

Function that plots the market (NDX) and model (in this case Variance

Gamma) for just one maturity (May ’08) given the model parameters and

return the mean percentuale error: Plot VG NDX 75.m

function Plot_VG_NDX_75(sigma,theta,nu)

% sigma = 0.23065153252436;

% theta = -0.70197610213548;

% nu = 0.08440167872024;

% We load all the option data:

S = 1725.52;

strike = [1400 1425 1450 1475 1500 1525 1550 1575...

... 1600 1625 1650 1675 1700 1725 1750 1775 1800...

... 1825 1850 1875 1900 1925];

C_mark = [343.40 321.10 298.90 277.20 255.90...

... 235.15 215.05 195.10 176.55 158.35 140.95...

... 124.45 108.95 94.35 80.80 68.20 57.20 47.00...

... 38.35 30.45 24.00 18.50];

t = 75/365;

r = 0.0244;

for i=1:22

option(i) = VG_FRFT(S,strike(i),r,t,sigma,theta,nu);

end

option = option’;

x = (sum(C_mark));

y = (sum(abs(C_mark’ - option))/x)*100;

disp(’The mean percentuale error per option is: ’)

disp(y)

plot(strike,C_mark,’o’,strike,option,’+’)

axis([1375 1950 0 350]);
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and approximation. Comm. Statist. Stochastic Models, 13 (1997), 887–

910.

[85] Samuelson, P. Rational theory of warrant pricing. Indutrial Manage-

ment Review, 6 (1965), 13–31.
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