
Department of Computer Science

MSc in Computer Science

On percolation theory for agent-based financial modeling

Damien Deville

September 9, 2009

Supervisor: Dr. Matt Hall

“This report is submitted as part requirement for the MSc Degree in Computer Science

at University College London. It is substantially the result of my own work except where

explicitly indicated in the text.”

“The report may be freely copied and distributed provided the source is explicitly acknowl-

edged.”

1

Abstract

We apply percolation theory to financial modeling through the Cont-Bouchaud

model. The project deals with the complete implementation in Java and testing of

this model. We also derive major results and completely describe the statistics of the

model.

A significative part treats the implementation of an algorithm able to efficiently find

clusters in a lattice. We then present some results from percolation theory, and then

discuss and implement the Cont-Bouchaud model. The results we find from percolation

theory are in accordance with the literature. We find that the Cont-Bouchaud model

is capable of generating results distributed as both a Gaussian and a power law, in

function of the activity probability. The exponents found for the power law are also in

accordance with the literature. A final part is dedicated to presenting and discussing

the implementation of the model in Java.

A copy of this report and all the code written for the project can be found on my website:

http://www.ddeville.me

2

Contents

1 Introduction 5

2 Implementing the cluster-finding algorithm 8

2.1 The Hoshen-Kopelman cluster-finding algorithm 10

3 Results from percolation theory 14

3.1 The critical probability . 14

3.2 Number of clusters . 16

3.3 The cluster size distribution . 18

4 The Cont-Bouchaud percolation model 23

4.1 Why percolation theory in financial modeling? 23

4.2 The model . 23

4.3 Generating time-series . 24

4.4 The distribution of returns generated by the Cont-Bouchaud model 24

4.4.1 The distribution of returns for 0.1 ≤ a ≤ 0.5 26

4.4.2 The distribution of returns for a < 0.1 32

4.5 Results . 34

4.6 Extensions . 35

5 Implementation: the class design 36

6 Conclusion 38

Appendix 39

A Java code 39

A.1 Cell.java . 39

A.2 Lattice.java . 42

3

A.3 Clusters.java . 46

A.4 ContBouchaud.java . 54

A.5 Model.java . 57

A.6 Functions.java . 60

References 66

4

1 Introduction

During the past twenty years, there has been increasing interest from banks and financial

firms in general for models able to represent asset price fluctuations [11]. These models were

particularly needed for risk management purposes. Quantitative analysts originally from

Mathematics or Physics university departments have been flooding the financial job market.

This was mainly due to the fact that since the 1987 financial crisis the shape of the market

has changed [1] [9] and particularly the distribution of returns that were until then assumed

to be Gaussian [2] [23] nowadays clearly display fat tails [9]. The appearance of fat tails in

the distribution of returns was the evidence that some risks inherent in asset prices were not

taken into account if we assumed that the distribution of returns was Gaussian [1] [9]. The

most famous model for option pricing, the Black-Scholes model created in 1973 [4], initially

assumed that the asset price followed a log-normal distribution. It has widely been showed

that this model is not consistent with real data [12]. Given the impossibility of representing

financial returns with Gaussian models, many authors showed interest to the subject and

many models have been presented to try to represent better asset price returns and particu-

larly defining a new distribution for them.

Many approaches for modeling changes in asset prices traded on a market have been pre-

sented [18]. Some focus on the price itself assuming it follows a well-known stochastic process

(such as the log-normal [4], but also some Lévy jump process [13] [21] or even mean-reverting

processes [14]), others add a stochastic variance (such as stochastic volatility models [15] or

GARCH models [5]).

Another approach is to focus on the agents composing the market and try to understand

their behaviours, actions and interactions, in order to measure their effect on the system as a

whole: this approach is called agent-based modeling [22]. In agent-based financial modeling,

we are particularly interested in summing up individual demand and supply in order to get

the global equilibrium directly proportional to the price change.

In agent-based modeling, a lot of models have been proposed (for a complete review of these

5

models see [22]). We decide to focus on the Cont-Bouchaud percolation model for its sim-

plicity and its efficacy [22].

The Cont-Bouchaud model is based on percolation theory, we will first introduce this.

Percolation theory is the study of the behavior and statistics of clusters on lattices. Suppose

we have a large square lattice where each cell can be occupied with probability p and empty

with probability 1− p. Examples of such occupied lattices are shown in Figure 1.

Figure 1: Examples of occupied 10x10 lattices with an occupation probability p = 0.2 (left)

and p = 0.7 (right). Grey cells are defined as occupied.

Each group of neighbouring occupied cells forms a cluster. Neighbours are defined as

cells having a common side but not those sharing only a corner as depicted in Figure 2 (thus

a neighbour is a cell at the top, bottom, left or right of the current cell, but not on the

diagonal). It is important to understand that the occupation of the cells is random and

each occupied cell is occupied independently of the status of its neighbours. The number of

clusters in the lattice, the size of each one and their distribution in the lattice are important

topics in percolation theory.

6

Figure 2: Definition of a neighbouring cell in the lattice. Assume the red cell is the current

cell: its neighbours are the four grey cells on top, bottom, left and right.

In this project, we first discuss an algorithm for finding clusters in a lattice since it

represents the keystone for discussing and implementing percolation theory. We then present

and test some results from percolation theory. Finally, we introduce the Cont-Bouchaud

model and discuss some results. The final section describes implementation.

7

2 Implementing the cluster-finding algorithm

As we will explain further below, running the model depends on correctly identifying all

clusters on a lattice. This is a non-trivial operation and indeed, most of the efficiency of

the whole model directly depends on the efficiency of the cluster-finding algorithm. In this

setting, being able to compute the cluster sizes for each given lattice in a very small amount

of time was a prerequisite for being able to study the model more in depth. Thus, a large

amount of time has been devoted to designing a good cluster-finding algorithm. We also have

to decide on a good data structure to store the clusters. We will need to get cluster sizes quite

often while implementing the model, so a fast access to them will improve the efficiency of

the whole model. Since checking if a lattice percolates means checking if a cluster spans the

whole lattice from top to bottom or side to side, the quality of the cluster-finding algorithm

could also be measured by its capability of detecting some unusual percolating clusters as the

one depicted in Figure 3. It is an interesting subject since, while writing and modifying the

code, it often seems that we will always find a new cluster shape that our algorithm cannot

detect! However, the concordance between the value we found for pc and the value usually

found in the literature [24] is strong evidence that our algorithm is capable of finding all

those clusters (see section 3).

The principle behind such an algorithm is to count the cluster number in the lattice and

to store the size of each cluster. We thus have to span the whole lattice from top-left to

bottom-right and assign each cell to a cluster.

For each occupied cell, we check if the cells at the top and left are occupied. We then have

four possibilities:

1. If both cells are empty, create a new cluster for the current cell.

2. If only one cell is occupied, the current cell belongs to the cluster this occupied cell

belongs to.

3. If both cells are occupied and belong to the same cluster, the current cell belongs to

that same cluster.

8

Figure 3: Example of a lattice pattern displaying an odd percolating spanning cluster that

the cluster-finding has to be able to recognize

4. When both cells are occupied but each one belongs to a different cluster, the current

cell will create a link between these two clusters. We have to find an easy way of linking

these two clusters while setting the current cell to one of them.

The first idea we had was to implement a proper algorithm based on Java Collections.

Each cluster was represented as an ArrayList containing cell objects. Each time we decided

a cell belonged to a cluster, we had to add this cell to the corresponding cluster ArrayList.

The problem was that each time we wanted to check if a cell belonged to a cluster, we had to

check and span all ArrayLists in order to find the cell. Since for large lattice sizes, clusters

can become quite large, this method was slow and definitely not scalable.

We then decided to look at the literature and found there were two famous algorithms that

already tried to solve this problem: the Leath algorithm [20] and the Hoshen-Kopelman al-

gorithm [16].

The Leath algorithm is based on recursions and while quite efficient, it is not fast enough for

our purpose. Given its efficiency, we focus on the Hoshen-Kopelman algorithm.

9

2.1 The Hoshen-Kopelman cluster-finding algorithm

The Hoshen-Kopelman algorithm is based on the well-known union-finding algorithm. It

works by assigning a label to each cluster. Then, if we have to link two clusters, we create

a union between both labels and set the cell as the lowest of the two labels. When we span

the lattice a second time, we find the unions and update the lattice. An example of the

Hoshen-Kopelman algorithm performed on a 6x6 lattice is shown in Figure 4.

Figure 4: The two-steps Hoshen-Kopelman algorithm performed on a 6x6 lattice. The grey

cells are occupied. The first step consists in spanning the lattice once and assigning cluster

labels to each occupied cell. If a link between two clusters has to be made, we create a union

relation between these two cluster labels. A second step consists in spanning the lattice a

second time and finding and updating the cluster labels (to insure each cluster is represented

by only one label).

The implementation of the Hoshen-Kopelman algorithm is as follows:

We first span the lattice once. Each time we find an occupied cell, we check the neighbors

at the top and left of the current cell. We have then four possibilities:

10

1. Both cells are empty: we create a new cluster label and set it to the current cell

2. Only one cell is occupied: we set the cluster label of the occupied cell to the current

cell

3. Both cells are occupied and have the same cluster label: we set this cluster label to the

current cell

4. If both cells are occupied but have distinct cluster labels, we set the smallest to be

the current cell cluster label and we add the union between both cluster labels as a

new entry into a labels HashTable where the key is defined as the largest label of the

two and the corresponding value is the smallest one. If the key already exists in the

HashTable, we have to use the find function. We explain this further below.

In the labels HashTable, when a value is equal to its key, it means the cluster that the key’s

label represents is not linked to any other cluster. A label of the type V (n) = n is called

good label (while a label of the form V (n) = m is called a bad label). We thus need a find

function able to tell us the smallest good label each bad label is linked to.

The find function works as follows: given a bad cluster label, we go recursively through each

union in the labels HashTable (of the type V (n) = m) until the key is equal to the value

meaning this is the smallest good label the current label is linked to.

The second step of the algorithm consists of spanning the whole lattice a second time and

applying this find function to the cluster label of each occupied cell we encounter. We can

now be sure that each cluster in the lattice is represented by only one cluster label and this

label is the smallest good label we can find.

Doing so, we manage to compute the algorithm and find clusters for a 1000x1000 lattice in

around 800ms while a 500x500 lattice in 200ms.

Pseudocode for the algorithm is shown in Listing 1 and pseudocode for the find function is

shown in Listing 2.

The best approach for testing the Hoshen-Kopelman algorithm is to deterministically

draw clusters in lattices, then run the algorithm and see how it behaves and if it gives the

11

1 For i = 1 To s i z e (l a t t i c e)

2 For j = 1 To s i z e (l a t t i c e)

3 get cur rent c e l l (i , j) ;

4 check top c e l l (i −1, j) ;

5 check l e f t c e l l (i , j−1) ;

6 I f (top and bottom c e l l s are empty)

7 Then c r e a t e new c l u s t e r l a b e l and s e t to cur rent c e l l ;

8 Else I f (j u s t one c e l l i s occupied)

9 Then s e t the occupied c e l l c l u s t e r l a b e l to the cur rent c e l l

10 Else I f (both c e l l s have the same c l u s t e r l a b e l)

11 Then s e t t h i s c l u s t e r l a b e l to the cur rent c e l l ;

12 Else I f (both c e l l s are occupied but have d i s t i n c t c l u s t e r l a b e l)

13 Then

14 {

15 a s s i gn sma l l e s t c l u s t e r l a b e l to the cur rent c e l l ;

16 c r e a t e a union r e l a t i o n V(n)=m in the l a b e l s HashTable ;

17 }

18 End

19 End

20 End

Listing 1: Hoshen-Kopelman algorithm for finding clusters in a site lattice (Pseudocode)

1 l a b e l s ← l a b e l s HashTable ;

2 labelNum ← i n i t i a l bad l a b e l ;

3 While(va lue matching the key labelNum in l a b e l s 6= labelNum)

4 labelNum ← value matching the labelNum key in l a b e l s ;

5 End

6 Return labelNum ;

Listing 2: The find method used in the Hoshen-Kopelman algorithm (Pseudocode)

12

Figure 5: Lattices with different cluster shapes used to test the efficacy of the cluster-finding

Hoshen-Kopelman algorithm

lattice a b c d e f g h

percolation? yes yes no no yes yes no yes

number of clusters 1 1 7 25 1 1 1 1

Table 1: Results of the test of the efficacy of the cluster-finding Hoshen-Kopelman algorithm

on the lattices from Figure 5

results we expect. By repeatedly designing lattices with unusual cluster shapes (percolating

or not) and testing how well the algorithm finds them and determines their size, we can

perform an efficient testing procedure. Examples of tested lattices and the results of the

applying algorithm on them are shown in Figure 5 and Table 1.

13

3 Results from percolation theory

After having discussed an efficient algorithm for finding clusters in a lattice, we can now

present some results from percolation theory, implement and test them.

It is important to note that, in the following sections, in order to get the results, we

often proceed computing the ensemble average. An ensemble consists of a large number of

experiments of a system, considered all at once, each of which represents a possible state

that the real system might be in. In our case, we can consider an ensemble as a large number

of returns generated by the model for a given lattice. Finally, we take an average of a large

number of ensembles. Even if the ensemble average is dependent on the ensembles chosen, if

we consider a large number of ensembles, the value of the ensemble average should stabilize

and tend to the real value.

3.1 The critical probability

Clearly, the expected size of a cluster of cells is a function of p. As p is increased, we would

expect larger clusters and for some probability we expect to find clusters that span the entire

lattice from one side to the other. This is referred to as the critical probability pc. Assuming

the size of the lattice is infinite, for a probability p below pc, there cannot be any cluster

that spans the whole lattice and for a probability p above pc there is one cluster that spans

the whole lattice. The exact value of pc depends on lattice topology [25], as bonds and sites

lattices. Here we concentrate on sites lattices.

We can find this critical probability by numerical simulation. We compute a number

of experiments for each given probability on a lattice. For each experiment, we check how

many lattices contain a spanning cluster. Some pseudocode illustrating this routine is listed

in Listing 3.

As the size of the lattice increases, the interval of probabilities generating a spanning

cluster narrows and it is then easier to find the critical probability. In Figure 6 we plot the

14

Figure 6: Looking for the critical probability. The x-axis is the probability p. The y-axis

is the number of lattices percolating (containing a top-bottom spanning cluster) out of a

sample of 1,000 lattices. The experiment is run on lattices of size (top-left to bottom-right)

10 (a), 20 (b), 50 (c), 200 (d), 1,000 (e) and 4,000 (f).

15

1 For i = 1 To 100

2 prob ← i /100 ;

3 counter ← 0 ;

4 For j = 1 To number o f exper iments

5 generate a new l a t t i c e with p r obab i l i t y prob ;

6 check i f the l a t t i c e p e r c o l a t e s ;

7 I f (l a t t i c e p e r c o l a t e s)

8 increment counter by one ;

9 End

10 Print counter ;

11 End

Listing 3: Algorithm to find the critical probability

results of the numerical simulations we have performed. Taking a 0.01 step between each

probability, we clearly see that the critical probability is between 0.59 and 0.60. Taking a

smaller interval (0.001) between 0.59 and 0.60, we find that the critical probability is between

0.592 and 0.593. Going ahead, we find a critical probability of 0.5927±10−4 which is in good

agreement with the value found in the literature (pc = 0.5927464) [25].

3.2 Number of clusters

The number of clusters in the lattice and the size of each one will be important in the defi-

nition of the Cont-Bouchaud model. We are therefore interested in finding the distribution

and sizes of clusters and particularly the number of clusters present in the lattice for a given

probability. We thus compute the number of clusters in lattices of various sizes for a range

of probabilities between 0 and 1. Listing 4 describes an algorithm for generating cluster

distribution data.

In Figure 7 we plot the number of clusters for each probability and for each lattice

size. In order to compare the lattices of different sizes, we scale the number of clusters in

each lattice dividing it by the square of the lattice size L. We can see that the result is

approximately independent of the size of the lattice. The probability that generates more

clusters is 0.27± 0.01 which is the value usually found in the literature [29].

16

1 For i = 1 To 100

2 prob ← i /100 ;

3 counter ← 0 ;

4 num ← number o f exper iments ;

5 For j = 1 To num

6 generate a new l a t t i c e with p r obab i l i t y prob ;

7 get the number o f c l u s t e r s in t h i s l a t t i c e ;

8 counter ← counter + number o f c l u s t e r s ;

9 End

10 Print counter /num ;

11 End

Listing 4: Algorithm to find the probability that insures the maximum number of clusters

Figure 7: The number of clusters in the lattice for each probability. Experiments are per-

formed for various sizes of the lattice. For each lattice size, we used a sample of 5,000

experiments (for sizes 32 and 64), 2,000 experiments (for size 128), 200 experiments (for size

256 and 512) and 50 experiments (for size 1,024 and 2,048).

17

3.3 The cluster size distribution

In order to determine the cluster size distribution, we simulate 10,000 experiments on a

501x501 latttice for probabilities ranging from 0.1 to 0.6. We then take an average of occur-

rences of each cluster size. The distribution of the cluster sizes follows a power law distribution

[25]. A power law distribution describes a special relationship where the frequencies decrease

very slowly as the sizes of the event increase.

In Figure 8 and Figure 9, we plot the cluster size distribution for various probabilities

(0.1, 0.2, 0.3, 0.4, 0.5 and 0.6). Notice that when using a probability p = 0.6 > pc, as assumed

in [27] we do not take into account the percolating cluster (this special cluster that spans

the lattice from one side to the other and that theoretically, assuming the size of the lattice

is infinite, would have an infinite size) in the plotting of the distribution. Then, for each

probability, we fit the distribution with the following power-law

f(x) = axk (1)

where a and k are constant, x is the cluster size and k is called the scaling exponent.

All the plotting was performed using Matlab 1 and some basic code used for obtaining

histograms is listed in Listing 5.

Power laws were fitted to the empirical data using the Ezyfit 2 Matlab toolbox.

We obtain good fits for all probabilities. The R-squared values are indeed close to 1 for all

probabilities (see Figure 8 and Figure 9 for the precise values of the R-squared).

On the right-hand side of the figures, we plot the same distributions but on a log-log scale.

We notice that if we take the logarithm on both sides of the power-law equation

log(f(x)) = log
(
axk
)

(2)

= log(a) + log(xk) (3)

= log(a) + k log(x). (4)

1http://www.mathworks.com
2http://www.fast.u-psud.fr/ezyfit

18

Figure 8: Cluster sizes distribution among a 501x501 lattice for various cell occupancy prob-

abilities: 0.1 (a and b), 0.2 (c and d) and 0.3 (e and f). On the left-hand side, we plotted

the distribution on a linear scale (blue “plus” signs) and we fitted a power law to it (orange

line). On the right-hand side, we plotted the same empirical distribution on a log-log scale.

19

Figure 9: Cluster sizes distribution among a 501x501 lattice for various cell occupancy prob-

abilities: 0.4 (a and b), 0.5 (c and d) and 0.6 (e and f). On the left-hand side, we plotted

the distribution on a linear scale (blue “plus” signs) and we fitted a power law to it (orange

line). On the right-hand side, we plotted the same empirical distribution on a log-log scale.

In the case p = 0.6, since p ≥ pc the critical probability, there is formation of an “infinite”

spanning cluster. This was removed when plotting the clusters distribution.

20

1 S = ’ output ’ ;

2 n = 100 ;

3 dim = 200 ;

4 x f i n a l = zeros (1 , dim) ;

5 y f i n a l = zeros (1 , dim) ;

6

7 for i =1:n

8 num = int2str (i) ;

9 x = [S num ’ . txt ’] ;

10 f i d = fopen (x , ’ r t ’) ;

11 a = fscanf (f i d , ’%f ’) ;

12 a = abs (a) ;

13 %a = sq r t (a) ;

14 [y , x] = hist (a , dim) ;

15 y f i n a l = y f i n a l + y ;

16 x f i n a l = x f i n a l + x ;

17 end

18

19 y f i n a l = y f i n a l /n ;

20 x f i n a l = x f i n a l /n ;

21 loglog (x f i n a l , y f i n a l , ’+ ’)

22 %p l o t (x f i n a l , y f i na l , ’+ ’)

Listing 5: Matlab code for getting the histogram graphs

Then

log(f(x)) = k log(x) + log(a) (5)

the equation becomes a linear relationship where k is the slope. Thus the power law curve

becomes a straight line on log-log plot. So, looking for the exponent of a power-law equation

reduces to looking for the slope of an elementary linear equation.

A similar property is found for exponential functions where

f(x) = aebx. (6)

Taking a logarithm on both sides leads to

log(f(x)) = log
(
aebx

)
(7)

= log(a) + bx (8)

21

Then

log(f(x)) = bx+ log(a) (9)

and the equation is again a linear relationship where b is the slope. Thus the exponential

function curve becomes a straight line on log-log plot.

These properties of both the power law and the exponential function are useful since they

facilitate the fitting, reducing it to a classic OLS.

For a probability p < pc, the distribution of the cluster sizes looks pretty much like an expo-

nential distribution while when p ≥ pc, it is clearly a power-law [22], [25].

22

4 The Cont-Bouchaud percolation model

Now we are capable of generating lattices with randomly occupied cells and compute the

cluster number and sizes, we can apply this to financial modeling through the Cont-Bouchaud

model.

4.1 Why percolation theory in financial modeling?

In agent-based financial modeling, we are looking for a way to represent each actor (such as

a trader or any kind of investor) in the system on its own (at the micro scale) and a way to

sum up the effects of each actor in order to have a scaled vision of the whole system (at the

macro scale).

In this setting a cell represents a trader, a lattice represents the whole market and clus-

ters represent groups of investors making joint decisions in the market. Percolation theory

provides a good framework for agent-based financial modeling. The lattice allows different

patterns for the market, different locations for each trader, and by the formation of clusters

different centers of interest where traders interact, exchange information and end taking sim-

ilar decisions in their investment.

Percolation theory is both a simple setting for a model but also a rich one, offering many

possibilities for financial modeling.

4.2 The model

The main purpose of the Cont-Bouchaud model is to investigate the phenomenon of herding

between traders. For example, traders working in the same bank may have similar opinions

about the market due to communication between themselves. Hence, the model assumes

that cells (traders) that are close enough to belong to the same cluster share the same

opinion about the market and make the same moves. Then, neighbor cells form clusters that

represent traders making joint decisions. This is how the Cont-Bouchaud model represents

herding phenomena in the financial markets [10].

Each cluster can decide to buy with probability a, sell with probability a or sleep with

23

probability 1 − 2a. Thus, a small a means a few trades at each time interval while a large

a (close to its maximum value 0.5) means that a large fraction of the traders participates in

the market. Traders in clusters behave identically, so the quantity purchased at each time

step by each cluster is directly proportional to the cluster size.

If the cluster buys, it buys a quantity φbuy proportional to the cluster size and if it sells,

it sells a quantity φsell proportional to the cluster size. Then, at each time interval, the

difference between supply and demand is given by the following formula

∆ =
1

λ

(∑
i

φbuy
i −

∑
i

φsell
i

)
(10)

where λ is a scaling component representing the excess demand needed to move the price by

one unit.

The logarithm of the price is then supposed to change proportionally to ∆ [6], [7], [10], [24],

[30]

log(P) = ∆ (11)

In this way, the change in price is proportionally determined by the difference between supply

and demand.

4.3 Generating time-series

Using the Cont-Bouchaud model in order to generate returns, we can then easily generate

prices time-series. Figure 10 shows two time-series generated with the Cont-Bouchaud model

for two different values of the activity probability a.

4.4 The distribution of returns generated by the Cont-Bouchaud model

We are particularly interested in the distribution of the returns generated by the Cont-

Bouchaud model. We know [9] [10] that in the market, given the presence of bubbles and

the risk of crashes (both characterized by sharp up or down price fluctuations) the returns

are not Gaussian but follow a fat-tailed distribution (where the fat tails actually model these

24

Figure 10: Two time-series generated with the Cont-Bouchaud model with the following

parameters: lattice size=101x101, p=0.4, a=0.0001 (left) and a=0.2 (right) for 30,000 steps.

sharp fluctuations). Indeed, the fat tails in the distribution are the product of the additional

risk in financial prices implied by the fear of crashes and bubbles.

One interesting characteristic of the Cont-Bouchaud model is the possibility, by selecting

different parameters, of generating returns distributed differently. For a very small activity

probability a, at each time step, only one (or a few) cluster trades. It follows that the dis-

tribution of the returns scales as the well-known [25] cluster size distribution of percolation

theory (see section 3) [27], that is to say an exponential distribution or a power law. However,

when the activity probability a is increased, at each time step, many clusters trade simul-

taneously. The returns are then proportional to the sum of each cluster size (characterizing

the size of the trade). The Central Limit Theorem [3] states that the sum of a sufficiently

large number of independently generated random numbers will be approximately Normally

distributed. From this, we can argue that for a → 0.5 the distribution of returns will tend

to a Gaussian.

We are now analyzing the distribution of returns in both regimes (when 0.1 ≤ a ≤ 0.5 and

when a ≤ 0.1).

25

a Mean St. dev. Skewness Kurtosis R2

0.50 -0.5574 4,902.00 0.00065 2.6486 0.99920

0.40 -1.4762 4,360.20 0.00063 2.6884 0.99939

0.30 1.6341 3,814.70 -0.00120 2.7709 0.99982

0.25 0.0368 3,429.20 -0.00074 2.8239 0.99994

0.20 -1.0861 3,103.10 0.00063 2.9105 0.99994

0.16 0.8861 2,766.10 0.00075 3.0087 0.99995

0.10 -0.5435 2,154.20 -0.00045 3.3320 0.99810

0.05 0.4659 1,546.60 0.00120 4.2486 0.99385

0.01 -0.0505 707.95 0.00039 12.0436 0.99689

Table 2: Results from the Gaussian distribution fitting on the experimental returns generated

with the Cont-Bouchaud model.

4.4.1 The distribution of returns for 0.1 ≤ a ≤ 0.5

In Figure 11, we plot the distribution of returns generated with the Cont-Bouchaud model

(summing up over all clusters generated by a lattice for p comprised between 0.01 and 0.59)

for an activity probability a equal to (from top-right to bottom-left) 0.5, 0.4, 0.3, 0.25, 0.2,

0.1, 0.05 and 0.01.

We observe that for a value of the probability a comprised between 0.1 and 0.5 the distri-

bution of the returns seems to look pretty much like a Gaussian distribution, however, when

a ≤ 0.1, we also clearly see that the distribution is no longer Gaussian. The results from the

fit are summarized in Table 2. We can clearly see that while for a large value of a (a ≥ 0.1)

the regression curve is a good fit to the data (given the value of R2 almost equal to 1) whereas

the fit is a lot worse for values of a ≤ 0.1 (the value of R2 is lower).

In order to characterize better its distribution, we now consider the four first moment of

the empirical data generated with the Cont-Bouchaud model.

26

Figure 11: Distribution of returns generated with the Cont-Bouchaud model for various

values of the probability a (from top-left to bottom-right: 0.5 (a), 0.4 (b), 0.3 (c), 0.25 (d),

0.2 (e), 0.1 (f), 0.05 (g), 0.01 (h)). The blue crosses are the experimental data while the

orange curve is the Gaussian distribution fit

27

Figure 12: Evolution of the standard deviation (left) and variance (right) in function of the

probability a.

Mean, µ

We clearly see that in all cases the mean of the returns is 0± 1.5, which is a characteristic of

the Cont-Bouchaud model since positive and negative returns have exactly the same proba-

bility of occurring and in the same amount.

Standard deviation, σ

In Figure 11 and Table 2 we see that when the value of the probability a increases, the stan-

dard deviation also increases. This is due to the fact that a larger value of the activity a in the

market leads to a greater number of actors participating in the market, synonym of greater

supply and demand and thus larger variance of returns. We are particularly interested in

knowing exactly how the standard deviation behaves when the the probability a increases.

In Figure 12, we plot the value of the standard deviation and the variance. In order to get

these values, we generate 1,000 steps of returns generated with the Cont-Bouchaud model

using a lattice of size 101x101. We then compute the standard deviation out of these data.

Performing this 50 times, we get 50 different values of the standard deviation out of which

we compute the average to get the final value of the standard deviation for a given a. We

perform this for all values of a in the range 0.01 − 0.50 with an increment of 0.01 between

28

each value of a.

The shape of the curve representing the evolution of the standard deviation as a function of a

looks like drawn from a square-root function and, indeed, when we try to fit it with a power

law equation of the type y = ban + c, we find a value of the exponent n very close to 0.5

(exactly n = 0.496± 10−2), and the value of c being insignificantly small (c = −23.5± 10−1

while the range of the function is [700, 5000]). We can then assume that the standard devia-

tion increases with the probability a as the function y = b
√
a.

Given that the variance is simply the square of the standard deviation, if we assume the

standard deviation is driven by a square-root equation, the variance should be a linear equa-

tion. And indeed, looking at the right-hand side of Figure 12, we clearly see that the variance

plot is a linear equation. When fitting the empirical data with a linear equation of the form

y = ba + c, we get an almost perfect fit and again the value of c is insignificantly small.

The linear equation is thus of the form y = ba. We can thus conclude that the variance

of the returns generated with the Cont-Bouchaud model increases linearly with the activity

probability a.

Skewness, s

Similarly, as referred in Table 2, the value of the skewness (a measure of the symmetry of

the distribution) is almost equal to 0 for any value of the probability a (s = 0 ± 10−3 for

any a). This is in accordance with a Gaussian distribution (the Gaussian distribution, being

symmetric by definition, has a skewness of 0).

Kurtosis, k

Another important characteristic is the value of the kurtosis changing as a function of a. We

know that a Gaussian distribution has a kurtosis of 3. A perfect fit between the empirical

data and a Gaussian distribution should also display a kurtosis of 3. Looking at the fit

between the empirical data and the Gaussian distribution in Figure 11, we see that for large

values of a, the empirical data display smaller tails than the Gaussian distribution (and thus

a lack of kurtosis) and for small values of a, the empirical data display fat tails (and thus

29

Figure 13: Evolution of the kurtosis in function of the probability a.

an excess of kurtosis). We can confirm this feature looking at the Table 2: for a value of

a < 0.10, the empirical data display a kurtosis greater than 3 (which characterizes an excess

of kurtosis); similarly, for a value of a > 0.20, the value of the kurtosis is less than 3 (which

characterizes a lack of kurtosis).

We are interested in the evolution of the kurtosis as a function of the activity probability

a and particularly in the value of a that gives a kurtosis of 3, i.e. describing a Gaussian

distribution (assuming that the skewness is 0). In Figure 13, we plotted the evolution of the

kurtosis in function of the activity probability a (with values taken in the range 0.01-0.50).

The plot of such kurtosis evolution clearly has the shape of a power-law curve. This feature

can be confirmed looking at Figure 14 which shows the same data on a log-log scale graph.

We can then fit the empirical data to a power-law equation. We get a good fit and find a

value of the exponent n close to −1 (exactly n = −1.0068). Assuming the power law equation

has the following parameters y = ban + c, we can thus assume that the equation describing

the kurtosis is function of the activity probability a is y = b 1
a

+ c.

We get a good fit (value of R2 very close to 1). We can therefore assume this fitted power

30

Figure 14: Evolution of the kurtosis in function of the probability a.

law equation describes the data well. We get the following values for the parameters

b = 0.076± 10−3

n = −1.007± 10−3

c = 2.529± 10−3

As we mentioned earlier, the empirical data display an excess of kurtosis for values of a below

a value a∗ ∈ [0.10, 0.20] and a lack of kurtosis above a∗. Since we know the value of both

the parameters of the equation and assuming that y∗ = 3 being the value of the kurtosis

for a Gaussian distribution, we can easily get the exact value of a∗ insuring a kurtosis of 3

assuming that the power law equation can be rewritten as

y = ban + c (12)

y − c
b

= an (13)

n log a = log

(
y − c
b

)
(14)

log a =
log
(

y−c
b

)
n

(15)

a∗ = exp

(
log
(

y∗−c
b

)
n

)
(16)

31

Substituting the fitted values into equation (16), we obtain

a∗ = 0.1636± 10−4

We then assume that for a value of a < 0.1636, the returns generated with the Cont-

Bouchaud model display an excess of kurtosis and then describe a fat tailed distribution

whereas for a value 0.1636 < a ≤ 0.50, the returns display a lack of kurtosis. The returns

generated with a value a∗ = 0.1636 should give follow a distribution with, as the Gaussian

distribution, a kurtosis of 3.

4.4.2 The distribution of returns for a < 0.1

Looking at Figure 11, we clearly see that for a small value of the probability a (a ≤ 0.1), the

distribution presents an excess of kurtosis (fat tails with much more values very close to the

mean than in a Normal distribution) and can be recognized as an exponential distribution

or a power law.

In Figure 15 we thus plotted on a log-log scale graph the distributions defined by the returns

generated by the Cont-Bouchaud model with a value of the activity probability a equal to

0.0001, 0.0005, 0.001, 0.005, 0.01 and 0.05. Assuming the distribution is a power law, we find

its exponent from the gradient of a straight line fit on a log-log plot. In Table 3, we show

the slopes found for each activity probability a. We can note that, for all probabilities, we

always find an exponent of 2.5 ± 5 × 10−2, precisely contained between 2.0 and 3.0, which

seems to be the value usually found in the literature [22].

a 0.0001 0.0005 0.001 0.005 0.01 0.05

slope -2.4680 -2.4952 -2.5290 -2.5484 -2.4001 -2.1960

Table 3: Slope of the power curves

Moreover, we know from the literature [26], that the returns for a small a follows an

exponential distribution if p < pc whereas it follow a power law if p = pc.

32

Figure 15: Distribution of returns generated with the Cont-Bouchaud model for different

values of the activity probability a (from top-left to bottom-right: 0.0001, 0.0005, 0.001,

0.005, 0.01 and 0.05). The generated clusters have been summed up from all the range of

occupancy probabilities p between 0.01 and 0.59. An average out of 100 experiments of

100,000 steps each on 101x101 lattices have been computed.

33

Figure 16: Comparison of the returns distribution when p < pc (left) vs. p = pc (right). The

other parameters are the same in both cases (100,000 experiments, lattice size 501x501 and

a = 0.005).

To verify this, in Figure 16, we plot two experimental distributions both generated from

a Cont-Bouchaud model taken on a 501x501 lattice with an activity probability a = 0.005

but one (left) for a probability p = 0.3 < pc and the other one (right) pc = 0.5927464 [25].

As discussed in [24], we clearly see the difference in the distribution: while for a value p = pc

the distribution is a power law, for a value p < pc it is an exponential distribution.

4.5 Results

As we have seen in this section, the Cont-Bouchaud model is capable of generating time-series

that look like actual asset prices time series. Looking closer at the statistics of the model,

we note that, by changing the value of the parameters, it can generate returns from both a

Gaussian distribution and a fat-tailed distribution. A distribution generate from the model

with a large value of the activity probability (close to 0.5) will have a lack of kurtosis while a

small a gives fat tails (excess of kurtosis). For a small a, we also find that the distribution is

a power law. For a specific value a∗ = 0.1636, the distribution has a kurtosis of 3, perfectly

characterizing a Gaussian distribution.

34

4.6 Extensions

The Cont-Bouchaud model represents the basis of percolation theory applied to financial

modeling. However, many extensions to this model have been discussed since then. Some

extensions focus on changing the relationship between the price change and the difference

between supply and demand. For example, in [7] Chakraborti considers the relative price

change to be proportional to the “relative” difference of demand and supply. Furthermore, in

[8], the authors assume different assumptions about the probabilities a and p. An interesting

approach [26] is also to allow the activity probability a to vary in function of the price

level (changing it proportionally to the last price change) to allow the activity reflecting the

behaviour of traders.

In this project, time constraints meant we were not able to discuss them all, but we

made their further hypothetical implementation as easy as possible. Since the basis of these

models are the same as the Cont-Bouchaud model, we can reutilize al the code written for

the purpose of this project and easily insert some extensions to it in the Model class (see

next section for a presentation of the class design).

35

5 Implementation: the class design

This section describes the Java implementation of the models and analysis code.

For the purpose of this project we decided to implement the model in Java. The Java lan-

guage offers a good object-oriented abstraction and makes it easy to represent entities by

classes and objects. Also, computation is fast.

For representing percolation models, we first needed an abstract type defining the lattice.

Then, we also needed an abstract type to represent each site of the lattice, as a cell.

Given that, we then had to design a Cell class and a Lattice class capable of generating

Cell and Lattice objects respectively. Basically, a Lattice is made of L2 Cells (L being

the size of an edge of the lattice). A Cell has some attributes being its coordinates (i, j) on

the lattice, its status (empty or occupied) and its cluster label. It is important to notice that

when it is first created the Cell is defined by default as empty and, since it does not belong

to any cluster yet, its cluster value is set as −1 by default.

Similarly, a Lattice has some particular attributes which are its size N (defined as the length

of the edge of the lattice) and the probability of each cell composing the lattice to be occu-

pied.

Then, since the main purpose of lattices in the Cont-Bouchaud model is to generate clusters

formed by groups of neighbor cells, we have to be able to retrieve cluster sizes from a popu-

lated lattice. We thus need a Clusters class that, given a populated Lattice made of Cells,

searches for clusters in the lattice and then generates a set of cluster sizes. The algorithm

implemented to search for clusters is the Hoshen-Kopelman algorithm we discussed in the

first section.

Given a Clusters object defining a set of cluster sizes, we can eventually define the Cont-

Bouchaud model through the creation of a ContBouchaud class. The ContBouchaud class

allows us to create ContBouchaud objects that compute a one-step price return based on

the Cont-Bouchaud model definition, given a cluster set.

Then, it seems logical to create a Model class in which we can define and implement models

36

based on the Cont-Bouchaud basic model (from the classic Cont-Bouchaud model to further

extensions of this model but nevertheless based on it). Through the Model class, we can

define different time steps from a Cont-Bouchaud model for instance and generate returns

for a given number of experiments.

Finally, in a Functions class, we integrate all the functions that we have been using through

the project in order to perform some simulations or test the model.

The entry point to the code is through a Project class containing the main method where

we can create Model objects and perform simulations on them.

Figure 17: Class diagram

37

6 Conclusion

In this project we presented and implemented the Cont-Bouchaud model for financial mod-

eling based on percolation theory.

The model is capable of generating time-series that look like actual asset prices time series.

The distribution of returns generated with the model can be both Gaussian (assuming a large

activity) or be a power law (assuming a small activity). The results we find from both pure

percolation theory and the Cont-Bouchaud model are in accordance with those found in the

literature insuring the correctness of our program.

Overall, the program allows a fast computation and offers a simple basis for developing vari-

ous extensions to the model on. Some extensions, for example, would include models capable

of interpreting the behaviour of traders allowing the activity to change in function of the

price level.

The Cont-Bouchaud model, unless most of agent-based financial models, gives a simple rep-

resentation of the market and only requires a few parameters. However, focusing on the

agents instead of the price itself (such as a geometric Brownian motion for representing price

fluctuations) implies having to model the whole market in order to generate a change in

price. This technique, even if closer to reality and less abstract than pure price-based model,

is slower.

38

Appendix

A Java code

In this appendix, we list all the Java code written in order to implement the Cont-Bouchaud

model for the purpose of this project. The code can be downloaded from my website:

http://www.ddeville.me

A.1 Cell.java

1 /∗∗

2 ∗ Defines Ce l l o b j e c t s t ha t are formed by a pa i r o f numbers r ep re s en t ing

3 ∗ the coord ina te s o f a c e l l in the l a t t i c e

4 ∗ @author Damien Dev i l l e

5 ∗

6 ∗/

7 public class Ce l l

8 {

9 private int i ; // The i−coord inate o f the c e l l

10 private int j ; // The j−coord inate o f the c e l l

11 private boolean s t a tu s ; // I f the c e l l i s de f ined as occupied (t rue) or empty (f a l s e)

12 private int c l u s t e rLab e l ; // The l a b e l o f the c l u s t e r t ha t the c e l l b e l ongs to

13

14

15 /∗∗

16 ∗ Constructor d e f i n i t i o n

17 ∗ @param i : The i−coord inate o f the c e l l

18 ∗ @param j : The j−coord inate o f the c e l l

19 ∗ @param s t a t u s : the s t a t u s o f the c e l l (t rue = occupied , f a l s e = empty)

20 ∗/

21 public Ce l l (int i , int j , boolean s t a tu s)

22 {

23 s e t I (i) ;

24 s e tJ (j) ;

25 s e tS ta tu s (s t a tu s) ;

26 s e tC lu s t e rLabe l (−1) ; // I n i t i a l l y , the c e l l b e l ongs to no c l u s t e r

27 }

28

29 /∗∗

30 ∗ Constructor d e f i n i t i o n : i f the user does not want to s p e c i f y the s ta tus ,

39

31 ∗ we de f ine the c e l l as empty

32 ∗ @param i : The i−coord inate o f the c e l l

33 ∗ @param j : The j−coord inate o f the c e l l

34 ∗/

35 public Ce l l (int i , int j)

36 {

37 s e t I (i) ;

38 s e tJ (j) ;

39 s e tS ta tu s (fa l se) ;

40 s e tC lu s t e rLabe l (−1) ;

41 }

42

43 /∗∗

44 ∗ Returns t rue i f two coord ina te s are equal , o therwi se re turns f a l s e

45 ∗ @param c e l l : the Ce l l o b j e c t we want to compare i t to

46 ∗ @return true i f the two o b j e c t s are equal , o therwi se f a l s e

47 ∗/

48 public boolean equalsTo (Ce l l c e l l)

49 {

50 i f (i == c e l l . g e t I () && j == c e l l . getJ ())

51 return true ;

52 else

53 return fa l se ;

54 }

55

56 /∗∗

57 ∗ Get the i−coord inate o f the c e l l

58 ∗ @return the i−coord inate o f the c e l l

59 ∗/

60 public int ge t I ()

61 {

62 return i ;

63 }

64

65 /∗∗

66 ∗ Get the j−coord inate o f the c e l l

67 ∗ @return the j−coord inate o f the c e l l

68 ∗/

69 public int getJ ()

70 {

71 return j ;

72 }

73

40

74 /∗∗

75 ∗ Get the s t a t u s o f the c e l l (occupied or empty)

76 ∗ @return the s t a t u s o f the c e l l (occupied = true or empty = f a l s e)

77 ∗/

78 public boolean getStatus ()

79 {

80 return s t a tu s ;

81 }

82

83 /∗∗

84 ∗ Get the l a b e l o f the c l u s t e r t ha t the c e l l b e l ongs to

85 ∗ @return the l a b e l o f the c l u s t e r t ha t the c e l l b e l ongs to

86 ∗/

87 public int ge tC lus t e rLabe l ()

88 {

89 return c l u s t e rLab e l ;

90 }

91

92 /∗∗

93 ∗ Set the i−coord inate o f the c e l l

94 ∗ @param i : the i−coord inate o f the c e l l

95 ∗/

96 private void s e t I (int i)

97 {

98 this . i = i ;

99 }

100

101 /∗∗

102 ∗ Set the j−coord inate o f the c e l l

103 ∗ @param j : the j−coord inate o f the c e l l

104 ∗/

105 private void s e tJ (int j)

106 {

107 this . j = j ;

108 }

109

110 /∗∗

111 ∗ Set the s t a t u s o f the c e l l (occupied or empty)

112 ∗ @param s t a t u s : the s t a t u s o f the c e l l (t rue = occupied , f a l s e = empty)

113 ∗/

114 public void s e tS ta tu s (boolean s t a tu s)

115 {

116 this . s t a tu s = s ta tu s ;

41

117 }

118

119 /∗∗

120 ∗ Set the l a b e l o f the c l u s t e r t ha t the c e l l b e l ongs to

121 ∗ @param c l u s t e rLa b e l : the l a b e l o f the c l u s t e r t ha t the c e l l b e l ongs to

122 ∗/

123 public void s e tC lu s t e rLabe l (int c l u s t e rLab e l)

124 {

125 this . c l u s t e rLab e l = c l u s t e rLabe l ;

126 }

127 }

Listing 6: Cell.java

A.2 Lattice.java

1 import java . u t i l .Random ;

2

3 /∗∗

4 ∗ Defines l a t t i c e o b j e c t s

5 ∗ @author Damien Dev i l l e

6 ∗

7 ∗/

8 public class Lat t i c e

9 {

10 private f ina l boolean OCCUP = true ; // de f i n e s an occupied c e l l

11 private f ina l boolean EMPTY = fa l se ; // de f i n e s a non−occupied c e l l

12 private int N ; // s i z e o f the l a t t i c e

13 private double prob ; // p r o b a b i l i t y o f an occupied node

14 private Ce l l [] [] l a t t i c e ; // array t ha t r ep re s en t s the l a t t i c e

15 private Random random ; // random seed generator

16

17

18 /∗∗

19 ∗ Constructor d e f i n i t i o n , c r ea t e s an empty l a t t i c e o f s i z e N

20 ∗ Al l the s i t e s are de f ined l i k e empty

21 ∗ @param N : the l a t t i c e s i z e

22 ∗/

23 public Lat t i c e (int N)

24 {

25 s e t S i z e (N) ; // we s e t the l a t t i c e s i z e

26 l a t t i c e = new Ce l l [N] [N] ; // we crea t e the ac tua l l a t t i c e

42

27 for (int i = 0 ; i < N ; i++) // we popu la te i t g iven the p r o b a b i l i t y

28 {

29 for (int j = 0 ; j < N ; j++)

30 {

31 l a t t i c e [i] [j] = new Ce l l (i , j ,EMPTY) ;

32 }

33 }

34 }

35

36 /∗∗

37 ∗ Constructor d e f i n i t i o n , c r ea t e s a l a t t i c e o f s i z e N popu la ted g iven the p r o b a b i l i t y p .

38 ∗ I f the randomly generated number i s g r ea t e r than p , we s e t the g iven c e l l o f the

39 ∗ l a t t i c e to be occupied , o therwi se we s e t i t as empty

40 ∗ @param N: the l a t t i c e s i z e

41 ∗ @param prob : the p r o b a b i l i t y o f each node be ing occupied

42 ∗/

43 public Lat t i c e (int N, double prob)

44 {

45 random = new Random() ; // we de f ine a random ob j e c t

46 s e t S i z e (N) ; // we s e t the l a t t i c e s i z e

47 setProb (prob) ; // we s e t the p r o b a b i l i t y

48 l a t t i c e = new Ce l l [N] [N] ; // we crea t e the ac tua l l a t t i c e

49 for (int i = 0 ; i < N ; i++) // we popu la te i t g iven the p r o b a b i l i t y

50 {

51 for (int j = 0 ; j < N ; j++)

52 {

53 i f (random . nextDouble () <= prob) // we s e t the c e l l to be occupied

54 l a t t i c e [i] [j] = new Ce l l (i , j ,OCCUP) ;

55 else // we s e t the c e l l to be empty

56 l a t t i c e [i] [j] = new Ce l l (i , j ,EMPTY) ;

57 }

58 }

59 }

60

61 /∗∗

62 ∗ Constructor d e f i n i t i o n , c r ea t e s a l a t t i c e o f s i z e N, popu la ted g iven the p r o b a b i l i t y p

63 ∗ f o r a p a r t i c u l a r random seed . I f the randomly generated number i s g r ea t e r than p , we

64 ∗ s e t the g iven c e l l o f the l a t t i c e to be occupied , o therwi se we s e t i t as empty

65 ∗ @param N: the l a t t i c e s i z e

66 ∗ @param prob : the p r o b a b i l i t y o f each node be ing occupied

67 ∗ @param seed : a p a r t i c u l a r seed fo r the random generator

68 ∗/

69 public Lat t i c e (int N, double prob , long seed)

43

70 {

71 random = new Random(seed) ; // we de f ine a random ob j e c t g iven the p a r t i c u l a r seed

72 s e t S i z e (N) ; // we s e t the l a t t i c e s i z e

73 setProb (prob) ; // we s e t the p r o b a b i l i t y

74 l a t t i c e = new Ce l l [N] [N] ; // we crea t e the ac tua l l a t t i c e

75 for (int i = 0 ; i < N ; i++) // we popu la te i t g iven the p r o b a b i l i t y

76 {

77 for (int j = 0 ; j < N ; j++)

78 {

79 i f (random . nextDouble () <= prob) // we s e t the c e l l to be occupied

80 l a t t i c e [i] [j] = new Ce l l (i , j ,OCCUP) ;

81 else // we s e t the c e l l to be empty

82 l a t t i c e [i] [j] = new Ce l l (i , j ,EMPTY) ;

83 }

84 }

85 }

86

87

88

89 /∗∗

90 ∗ Get the l a t t i c e s i z e

91 ∗ @return the l a t t i c e s i z e

92 ∗/

93 public int g e tS i z e ()

94 {

95 return N ;

96 }

97

98 /∗∗

99 ∗ Get the p r o b a b i l i t y

100 ∗ @return the p r o b a b i l i t y

101 ∗/

102 public double getProb ()

103 {

104 return prob ;

105 }

106

107 /∗∗

108 ∗ Get the c e l l a t the i , j coord ina te s in the l a t t i c e

109 ∗ @param i : the i−coord inate in the l a t t i c e

110 ∗ @param j : the j−coord inate in the l a t t i c e

111 ∗ @return the c e l l corresponding to the se coord ina te s

112 ∗/

44

113 public Ce l l g e tCe l l (int i , int j)

114 {

115 return l a t t i c e [i] [j] ;

116 }

117

118 /∗∗

119 ∗ Set the l a t t i c e s i z e

120 ∗ @param N: the l a t t i c e s i z e

121 ∗/

122 private void s e t S i z e (int N)

123 {

124 this .N = N ;

125 }

126

127 /∗∗

128 ∗ Set the p r o b a b i l i t y

129 ∗ @param p : the p r o b a b i l i t y

130 ∗/

131 private void setProb (double prob)

132 {

133 this . prob = prob ;

134 }

135

136 /∗∗

137 ∗ Set a c e l l to the de f ined po s i t i on in the l a t t i c e

138 ∗ @param c e l l : the c e l l we want to s e t

139 ∗/

140 public void s e tC e l l (Ce l l c e l l)

141 {

142 int i = c e l l . g e t I () ;

143 int j = c e l l . getJ () ;

144 l a t t i c e [i] [j] = c e l l ;

145 }

146

147 /∗∗

148 ∗ Loop through the l a t t i c e and p l o t i t . P lo t a ”∗” i f the c e l l i s occupied and

149 ∗ an empty space i f i t ’ s empty

150 ∗/

151 public void p l o tLa t t i c e ()

152 {

153 for (int i = 0 ; i < N ; i++)

154 {

155 for (int j = 0 ; j < N ; j++)

45

156 {

157 i f (l a t t i c e [i] [j] . g e tStatus () == OCCUP)

158 System . out . p r i n t (”∗”) ; // i f the c e l l i s occupied , we draw a ∗

159 else

160 System . out . p r i n t (” ”) ; // i f the c e l l i s empty , we draw an empty space

161 }

162 System . out . p r i n t l n (””) ;

163 }

164 }

165 }

Listing 7: Lattice.java

A.3 Clusters.java

1 import java . u t i l . ArrayList ;

2 import java . u t i l . Co l l e c t i o n ;

3 import java . u t i l . Enumeration ;

4 import java . u t i l . Hashtable ;

5

6 /∗∗

7 ∗ Defines c l u s t e r s o b j e c t s r ep re s en t ing the c l u s t e r s in

8 ∗ a popu la ted l a t t i c e

9 ∗ @author Damien Dev i l l e

10 ∗

11 ∗/

12 public class Clus t e r s

13 {

14 private f ina l boolean OCCUP = true ; // de f i n e s an occupied c e l l

15 private f ina l boolean EMPTY = fa l se ; // de f i n e s an empty c e l l

16 private Lat t i c e l a t t i c e ; // de f i n e s a l a t t i c e

17 // conta ins the var ious l a b e l s f o r the c l u s t e r s

18 private Hashtable<Integer , Integer> l a b e l s ;

19 // conta ins the number o f c e l l s f o r each c l u s t e r

20 private Hashtable<Integer , Integer> c l u s t e r s ;

21 private int l abe l Index ; // va lue o f the f i r s t l a b e l

22

23 /∗∗

24 ∗ Constructor d e f i n i t i o n

25 ∗ @param l a t t i c e : the l a t t i c e we are ana ly s ing c l u s t e r s on

26 ∗/

27 public Clus t e r s (La t t i c e l a t)

46

28 {

29 l a t t i c e = l a t ;

30 l abe l Index = 1 ; // we s e t the va lue o f the f i r s t l a b e l to be 1

31 // we crea t e a new hash t ab l e f o r the c l u s t e r l a b e l s

32 l a b e l s = new Hashtable<Integer , Integer >() ;

33 // we crea t e a new hash t ab l e f o r the c l u s t e r numbers

34 c l u s t e r s = new Hashtable<Integer , Integer >() ;

35 // we f i r s t a s s i gn raw c l u s t e r l a b e l s to the occupied c e l l s

36 a s s i gnLabe l s () ;

37 // we then l i n k the c l u s t e r s us ing the root l a b e l f o r each l i n k ed c l u s t e r

38 updateLabels () ;

39 }

40

41

42 /∗∗

43 ∗ Get the c l u s t e r number in the l a t t i c e

44 ∗ @return the c l u s t e r number in the l a t t i c e

45 ∗/

46 public int getClusterNumber ()

47 {

48 return c l u s t e r s . s i z e () ; // the c l u s t e r number

49 }

50

51

52 /∗∗

53 ∗ Get an array popu la ted with the c l u s t e r s i z e s in the l a t t i c e

54 ∗ @return an array o f c l u s t e r s i z e s

55 ∗/

56 public I n t eg e r [] g e tC l u s t e r S i z e s ()

57 {

58 Co l l e c t i on <Integer> c = c l u s t e r s . va lue s () ;

59 In t eg e r [] c l u s t e r S i z e sA r r ay = (In t eg e r []) c . toArray (new I n t eg e r [c . s i z e ()]) ;

60 return c l u s t e r S i z e sA r r ay ;

61 }

62

63

64 /∗∗

65 ∗ Print the c l u s t e r number

66 ∗/

67 public void printClusterNumber ()

68 {

69 System . out . p r i n t l n (c l u s t e r s . s i z e ()) ;

70 }

47

71

72

73 /∗∗

74 ∗ Print the s i z e o f each c l u s t e r in the l a t t i c e

75 ∗/

76 public void p r i n tC l u s t e r S i z e s ()

77 {

78 Enumeration<Integer> k = c l u s t e r s . keys () ;

79 while (k . hasMoreElements ())

80 {

81 int key = (int) k . nextElement () ;

82 System . out . p r i n t l n ((int) c l u s t e r s . get (key)) ;

83 }

84 }

85

86

87 /∗∗

88 ∗ Span the l a t t i c e once and ass i gn c l u s t e r l a b e l s to each occupied c e l l .

89 ∗ However , some c l u s t e r can s t i l l be de f ined by more than one l a b e l .

90 ∗/

91 private void a s s i gnLabe l s ()

92 {

93 for (int i = 0 ; i < l a t t i c e . g e tS i z e () ; i++) // we span the l a t t i c e

94 {

95 for (int j = 0 ; j < l a t t i c e . g e tS i z e () ; j++)

96 {

97 Ce l l c e l l = l a t t i c e . g e tCe l l (i , j) ; // we ge t the current c e l l in the l a t t i c e

98 i f (c e l l . g e tStatus () == OCCUP) // we check i f the c e l l i s occupied

99 checkTopAndLeftNeighbors (c e l l) ; // we check i t s top and l e f t ne ighbors

100 } // to as s i gn the r i g h t l a b e l to the c e l l

101 }

102 }

103

104

105 /∗∗

106 ∗ Span the l a t t i c e once and update the l a b e l s f o r the c l u s t e r s t ha t are s t i l l

107 ∗ de f ined by more than one l a b e l .

108 ∗ For each l a b e l , i t checks i f i t i s the root one and i f not , i t l oo k s f o r the root one .

109 ∗/

110 private void updateLabels ()

111 {

112 for (int i = 0 ; i < l a t t i c e . g e tS i z e () ; i++) // we span the l a t t i c e

113 {

48

114 for (int j = 0 ; j < l a t t i c e . g e tS i z e () ; j++)

115 {

116 Ce l l c e l l = l a t t i c e . g e tCe l l (i , j) ; // we ge t the current c e l l in the l a t t i c e

117 i f (c e l l . g e tStatus () == OCCUP) // we check i f the c e l l i s occupied

118 {

119 // we f ind the root l a b e l corresponding to the c e l l

120 int label = findRootLabel (c e l l) ;

121 c e l l . s e tC lu s t e rLabe l (label) ; // we s e t t h i s new l a b e l to the c e l l

122 // i f the c l u s t e r s ha sh t a b l e does not a l ready contain t h i s l a b e l

123 i f (! c l u s t e r s . containsKey (label))

124 c l u s t e r s . put (label , 1) ; // we add i t to i t

125 else // i f i t a l ready conta ins i t , we increment i t s s i z e by 1

126 c l u s t e r s . put (label , c l u s t e r s . get (label) + 1) ;

127 }

128 }

129 }

130 }

131

132

133 /∗∗

134 ∗ For each occupied c e l l , check the c e l l s on top and l e f t o f the current c e l l .

135 ∗ There are 4 cases :

136 ∗ 1 : both c e l l s are empty , we then have to crea t e a new c l u s t e r l a b e l and app ly i t to

137 the current c e l l

138 ∗ 2 : only one c e l l i s empty , we then have to app ly the l a b e l o f the c l u s t e r the

139 non−empty c e l l b e l ongs to to the current c e l l

140 ∗ 3 : both c e l l s are occupied and have the same c l u s t e r l a b e l : we then app ly t h i s c l u s t e r

141 l a b e l to the current c e l l

142 ∗ 4 : both c e l l s are occupied but have d i f f e r e n t c l u s t e r l a b e l s : we then app ly the

143 sma l l e s t l a b e l to the current c e l l and de f ine a union between the l a b e l s

144 ∗ @param c e l l : the current c e l l we are check ing

145 ∗/

146 private void checkTopAndLeftNeighbors (Ce l l c e l l)

147 {

148 Ce l l c e l l t o p ; // c e l l a t the top o f the current c e l l

149 Ce l l c e l l l e f t ; // c e l l a t the l e f t o f the current c e l l

150

151 // we make sure t ha t c e l l t o p i s a c t u a l l y not ou t s i d e o f the l a t t i c e

152 i f (c e l l . g e t I () > 0) // i f i t i s a c t u a l l y INSIDE the l a t t i c e

153 c e l l t o p = l a t t i c e . g e tCe l l (c e l l . g e t I ()−1 , c e l l . getJ ()) ; // we ge t the ac tua l c e l l

154 else // i f i t i s a c t u a l l y OUTSIDE the l a t t i c e

155 // we de f ine i t as an empty c e l l wi th coord ina te s (−1,−1)

156 c e l l t o p = new Ce l l (−1 , −1, EMPTY) ;

49

157

158 // we make sure t ha t c e l l l e f t i s a c t u a l l y not ou t s i d e o f the l a t t i c e

159 i f (c e l l . getJ () > 0) // i f i t i s a c t u a l l y INSIDE the l a t t i c e

160 c e l l l e f t = l a t t i c e . g e tCe l l (c e l l . g e t I () , c e l l . getJ ()−1) ; // we ge t the ac tua l c e l l

161 else // i f i t i s a c t u a l l y OUTSIDE the l a t t i c e

162 // we de f ine i s as an empty c e l l wi th coord ina te s (−1,−1)

163 c e l l l e f t = new Ce l l (−1 , −1, EMPTY) ;

164

165 // we ge t the c l u s t e r l a b e l to which the c e l l a t the top be longs

166 int topCluste rLabe l = c e l l t o p . ge tC lus t e rLabe l () ;

167 // we ge t the c l u s t e r l a b e l to which the c e l l a t the l e f t b e l ongs

168 int l e f tC l u s t e rL ab e l = c e l l l e f t . g e tC lus t e rLabe l () ;

169

170 // 1 s t case :

171 // i f both c e l l t o p and c e l l l e f t are empty , we have to crea t e a new c l u s t e r l a b e l

172 i f (c e l l t o p . ge tStatus () == EMPTY && c e l l l e f t . ge tStatus () == EMPTY)

173 {

174 c e l l . s e tC lu s t e rLabe l (l abe l Index) ; // we s e t the c l u s t e r l a b e l to be l a b e l I nd e x

175 // we add t h i s c l u s t e r l a b e l to the l a b e l s ha sh t a b l e . Note t ha t the key

176 // and the va lue i s the same s ince t h i s l a b e l i s not l i n k ed to another one ye t

177 l a b e l s . put (labe l Index , l abe l Index) ;

178 l abe l Index++ ; // we increment the l a b e l I n d e x by 1

179 }

180

181 // 2nd case :

182 // i f only one o f both c e l l i s empty , we have to s e t the c e l l c l u s t e r l a b e l same as

183 // the non−empty c e l l ’ s one

184 else i f (c e l l t o p . ge tStatus () == EMPTY) // i f c e l l t o p i s empty

185 // we f ind the root l a b e l and s e t i t as c e l l l e f t ’ s l a b e l

186 c e l l . s e tC lu s t e rLabe l (f i nd (l e f tC l u s t e rL ab e l)) ;

187 else i f (c e l l l e f t . ge tStatus () == EMPTY) // i f c e l l l e f t i s empty

188 // we f ind the root l a b e l and s e t i t as c e l l t o p ’ s l a b e l

189 c e l l . s e tC lu s t e rLabe l (f i nd (topCluste rLabe l)) ;

190

191 // 3rd case :

192 // i f both c e l l c l u s t e r l a b e l s are equal , we s e t the c e l l c l u s t e r l a b e l same as

193 // t h i s c l u s t e r l a b e l

194 else i f (topCluste rLabe l == l e f tC l u s t e rL ab e l)

195 // we f ind the root l a b e l and s e t i t as c e l l t o p and c e l l l e f t ’ s l a b e l

196 c e l l . s e tC lu s t e rLabe l (f i nd (topCluste rLabe l)) ;

197

198 // 4 th case :

199 // i f c e l l t o p and c e l l l e f t be long to d i f f e r e n t c l u s t e r s , we s e t the current c e l l ’ s

50

200 // l a b e l as the sma l l e s t l a b e l

201 // we a l s o have to update the l a b e l s r e l a t i o n in the l a b e l s ha sh t a b l e

202 // in the l a b e l hash tab l e , i f one c l u s t e r i s de f ined by only one l a b e l , the key entry

203 // (l a b e l) w i l l be the same as i t s va lue

204 // i f one c l u s t e r i s de f ined by more than one l a b e l , say 2 , the key entry w i l l be the

205 // b i g g e s t l a b e l and the va lue the sma l l e s t

206 else

207 {

208 // we look f o r the sma l l e s t l a b e l between both

209 int smal lLabe l=(topClusterLabe l<l e f tC l u s t e rL ab e l)? topCluste rLabe l : l e f tC l u s t e rL ab e l ;

210 // we look f o r the b i g g e s t l a b e l between both

211 int bigLabe l=(topClusterLabe l<l e f tC l u s t e rL ab e l)? l e f tC l u s t e rL ab e l : topCluste rLabe l ;

212 // we s e t the sma l l e s t l a b e l f o r the current c e l l

213 c e l l . s e tC lu s t e rLabe l (smal lLabe l) ;

214

215 // i f the sma l l e s t l a b e l i s a c t u a l l y sma l l e r than the va lue corresponding

216 // to the b i g g e s tLa b e l key

217 i f (smal lLabe l < l a b e l s . get (b igLabe l))

218 // we update the key and l a b e l to ma t e r i a l i z e the l i n k

219 l a b e l s . put (f i nd (l a b e l s . get (b igLabe l)) , f i nd (smal lLabe l)) ;

220 // i f the sma l l e s t l a b e l i s a c t u a l l y b i g g e r than the va lue corresponding

221 // to the b i g g e s tLa b e l key

222 else

223 // we update the key and l a b e l to ma t e r i a l i z e the l i n k

224 l a b e l s . put (f i nd (smal lLabe l) , f i nd (l a b e l s . get (b igLabe l))) ;

225 }

226 }

227

228

229 /∗∗

230 ∗ Find the sma l l e s t ”good” l a b e l g iven a ”bad” l a b e l

231 ∗ @param l a b e l : the bad l a b e l we want to f i nd the good l a b e l f o r

232 ∗ @return the good l a b e l

233 ∗/

234 private int f i nd (int label)

235 {

236 int i n i t L ab e l = label ; // we s t o r e the o r i g i n a l bad l a b e l

237 // wh i l e the l a b e l i s not good , we loop through the l i n k s

238 while (l a b e l s . get (i n i tL ab e l) != i n i tLab e l)

239 i n i tLab e l = l a b e l s . get (i n i tLab e l) ;

240 // the va lue o f i n i t L a b e l i s now the ”good” l a b e l

241

242 // we loop through the l a b e l s from the bad one another time

51

243 while (l a b e l s . get (label) != label)

244 {

245 int temp = l a b e l s . get (label) ; // we ge t the current l a b e l a t each loop s t ep

246 // we s e t the va lue o f each current l a b e l to the ”good” l a b e l

247 l a b e l s . put (label , i n i t L ab e l) ;

248 label = temp ;

249 }

250 return i n i t L ab e l ; // we return the good l a b e l

251 }

252

253

254 /∗∗

255 ∗ Find the root l a b e l f o r each c l u s t e r l a b e l from the l a b e l s ha sh t a b l e .

256 ∗ The root l a b e l i s de f ined to be the sma l l e s t l a b e l among a l l l a b e l s c on s t i t u i n g a

257 ∗ common c l u s t e r

258 ∗ @param c e l l : the c e l l we are check ing the c l u s t e r l a b e l f o r

259 ∗ @return the root c l u s t e r l a b e l

260 ∗/

261 private int f indRootLabel (Ce l l c e l l)

262 {

263 int labelNum = c e l l . g e tC lus t e rLabe l () ; // we ge t the c l u s t e r l a b e l o f the c e l l

264 while (l a b e l s . get (labelNum) != labelNum) // we loop through the l a b e l s ha sh t a b l e

265 { // un t i l we reach the root l a b e l

266 labelNum = l a b e l s . get (labelNum) ;

267 }

268 return labelNum ; // we return the root l a b e l f o r t h i s c e l l

269 }

270

271

272 /∗∗

273 ∗ Check i f p e r co l a t i on (a top−bottom spanning c l u s t e r) occurs in the l a t t i c e

274 ∗ @return true i f t he re i s perco la t i on , f a l s e i f not

275 ∗/

276 public boolean checkPerco l a t i on ()

277 {

278 // we check i f t he re i s the same l a b e l on the top and bottom rows o f the l a t t i c e

279 // a r r a y l i s t t ha t conta ins a l l top−row c e l l s

280 ArrayList<Integer> top = new ArrayList<Integer >() ;

281 // a r r a y l i s t t ha t conta ins a l l bottom−row c e l l s

282 ArrayList<Integer> bottom = new ArrayList<Integer >() ;

283 // a r r a y l i s t t ha t conta ins a l l l e f t −column c e l l s

284 ArrayList<Integer> l e f t = new ArrayList<Integer >() ;

285 // a r r a y l i s t t ha t conta ins a l l r i gh t−column c e l l s

52

286 ArrayList<Integer> r i g h t = new ArrayList<Integer >() ;

287 // we loop through the columns o f the l a t t i c e

288 for (int i = 0 ; i < l a t t i c e . g e tS i z e () ; i++)

289 {

290 // we ge t each c e l l from the top row

291 Ce l l topCe l l = l a t t i c e . g e tCe l l (0 , i) ;

292 // we ge t each c e l l from the bottom row

293 Ce l l bottomCell = l a t t i c e . g e tCe l l (l a t t i c e . g e tS i z e ()−1 , i) ;

294 i f (topCe l l . g e tStatus () == OCCUP) // i f the top c e l l i s occupied

295 top . add (topCe l l . g e tC lus t e rLabe l ()) ; // we add i t to the top a r r a y l i s t

296 i f (bottomCell . g e tSta tus () == OCCUP) // i f the bottom c e l l i s occupied

297 bottom . add (bottomCell . g e tC lus t e rLabe l ()) ; // we add i t to the bottom a r r a y l i s t

298 }

299 // we remove from the top a r r a y l i s t a l l e lements t ha t are not in bottom

300 top . r e t a i nA l l (bottom) ;

301 i f (top . s i z e () > 0) // we check i f t he re are s t i l l e lements in the a r r a y l i s t

302 return true ;

303 // i f t he re i s not a spanning c l u s t e r from top to bottom ,

304 // we check i f t he re i s one from l e f t s i d e to r i g h t s i d e

305 // we loop through the rows o f the l a t t i c e

306 for (int j = 0 ; j < l a t t i c e . g e tS i z e () ; j++)

307 {

308 // we ge t each c e l l from the l e f t column

309 Ce l l l e f t C e l l = l a t t i c e . g e tCe l l (j , 0) ;

310 // we ge t each c e l l from the r i g h t column

311 Ce l l r i g h tC e l l = l a t t i c e . g e tCe l l (j , l a t t i c e . g e tS i z e ()−1) ;

312 i f (l e f t C e l l . g e tStatus () == OCCUP) // i f the l e f t c e l l i s occupied

313 l e f t . add (l e f t C e l l . g e tC lus t e rLabe l ()) ; // we add i t to the l e f t a r r a y l i s t

314 i f (r i g h tC e l l . g e tStatus () == OCCUP) // i f the r i g h t c e l l i s occupied

315 r i gh t . add (r i g h tC e l l . g e tC lus t e rLabe l ()) ; // we add i t to the r i g h t a r r a y l i s t

316 }

317 // we remove from the l e f t a r r a y l i s t a l l e lements t ha t are not in r i g h t

318 l e f t . r e t a i nA l l (r i g h t) ;

319 i f (l e f t . s i z e () > 0) // we check i f t he re are s t i l l e lements in the a r r a y l i s t

320 return true ;

321 return fa l se ; // i f t he re i s no spanning c l u s t e r , we e v en t ua l l y re turn f a l s e

322 }

323 }

Listing 8: Clusters.java

53

A.4 ContBouchaud.java

1 import java . u t i l .Random ;

2

3 /∗∗

4 ∗ Create a ContBouchaud o b j e c t s r ep re s en t ing as the re turn

5 ∗ f o r one time s t ep computed from the Cont−Boucaud model

6 ∗ @author Damien Dev i l l e

7 ∗

8 ∗/

9 public class ContBouchaud

10 {

11 private Random random ;

12 private double a ; // the p r o b a b i l i t y t ha t a c l u s t e r be a c t i v e (buys or s e l l s)

13 private double lambda ; // the s c a l i n g f a c t o r

14 private double pr iceReturn ; // the pr i c e change g iven by the model

15

16 /∗∗

17 ∗ Constructor d e f i n i t i o n .

18 ∗ Compute the pr i c e re turn with the Cont−Bouchaud model . F i r s t popu la te a l a t t i c e , f i nd

19 ∗ the c l u s t e r s i z e s and then compute the pr i c e re turn .

20 ∗ @param l a t t i c e S i z e : the s i z e o f the l a t t i c e

21 ∗ @param prob : the p r o b a b i l i t y t ha t a s i t e in the l a t t i c e be occupied

22 ∗ @param a : the p r o b a b i l i t y t ha t a c l u s t e r be a c t i v e (buys or s e l l s)

23 ∗ @param lambda : the s c a l i n g f a c t o r in the Cont−Bouchaud model

24 ∗/

25 public ContBouchaud (int l a t t i c e S i z e , double prob , double a , double lambda)

26 {

27 setProb (a) ; // we s e t the a c t i v e c l u s t e r p r o b a b i l i t y

28 setLambda (lambda) ; // we s e t the s c a l i n g f a c t o r

29

30 double sumBuy = 0 ; // we assume the sum of buying c l u s t e r s i s i n i t i a l l y zero

31 double sumSel l = 0 ; // we assume the sum of s e l l i n g c l u s t e r s i s i n i t i a l l y zero

32 random = new Random() ; // we de f ine a new random ob j e c t

33

34 // we crea t e a new l a t t i c e g iven the parameters

35 La t t i c e l a t = new Lat t i c e (l a t t i c e S i z e , prob) ;

36 // we check the c l u s t e r s in t h i s l a t t i c e

37 C lu s t e r s c l u s t e r s = new Clus t e r s (l a t) ;

38 // we ge t the s i z e o f each c l u s t e r

39 In t eg e r [] c l u s t e r S i z e s = c l u s t e r s . g e tC l u s t e r S i z e s () ;

40

41 for (int i = 0 ; i < c l u s t e r S i z e s . l ength ; i++) // we loop through the c l u s t e r s

54

42 {

43 // we ge t a new uni formly generated random number

44 double rnd = random . nextDouble () ;

45 i f (rnd < a) // i f the random number i s l e s s than a (p r o b a b i l i t y a)

46 sumSel l += c l u s t e r S i z e s [i] ; // we assume the c l u s t e r i s s e l l i n g

47 else i f (rnd > 1−a) // i f the random number i s g r ea t e r than 1−a (p r o b a b i l i t y a)

48 sumBuy += c l u s t e r S i z e s [i] ; // we assume the c l u s t e r i s buying

49 // e l s e the c l u s t e r s l e e p s

50 }

51 // the pr i c e re turn i s then g iven by the s ca l ed d i f f e r e n c e

52 pr iceReturn = (sumBuy−sumSel l)/ lambda ;

53 }

54

55 /∗∗

56 ∗ Constructor d e f i n i t i o n .

57 ∗ Compute the pr i c e re turn us ing the Cont−Bouchaud model assuming we a l ready have an

58 ∗ array conta in ing the c l u s t e r s i z e s . This cons t ruc tor i s u s e f u l when we want to

59 ∗ compute var ious time s t e p s from the same l a t t i c e pa t t e rn (f o r computation e f f i c i e n c y) .

60 ∗ @param l a t t i c e S i z e : the s i z e o f the l a t t i c e

61 ∗ @param prob : the p r o b a b i l i t y t ha t a s i t e in the l a t t i c e be occupied

62 ∗ @param a : the p r o b a b i l i t y t ha t a c l u s t e r be a c t i v e (buys or s e l l s)

63 ∗ @param lambda : the s c a l i n g f a c t o r in the Cont−Bouchaud model

64 ∗/

65 public ContBouchaud (double a , double lambda , In t eg e r [] c l u s t e r S i z e s)

66 {

67 setProb (a) ; // we s e t the a c t i v e c l u s t e r p r o b a b i l i t y

68 setLambda (lambda) ; // we s e t the s c a l i n g f a c t o r

69

70 double sumBuy = 0 ; // we assume the sum of buying c l u s t e r s i s i n i t i a l l y zero

71 double sumSel l = 0 ; // we assume the sum of s e l l i n g c l u s t e r s i s i n i t i a l l y zero

72 random = new Random() ; // we de f ine a new random ob j e c t

73

74 for (int i = 0 ; i < c l u s t e r S i z e s . l ength ; i++) // we loop through the c l u s t e r s

75 {

76 // we ge t a new uni formly generated random number

77 double rnd = random . nextDouble () ;

78 i f (rnd < a) // i f the random number i s l e s s than a (p r o b a b i l i t y a)

79 sumSel l += c l u s t e r S i z e s [i] ; // we assume the c l u s t e r i s s e l l i n g

80 else i f (rnd > 1−a) // i f the random number i s g r ea t e r than 1−a (p r o b a b i l i t y a)

81 sumBuy += c l u s t e r S i z e s [i] ; // we assume the c l u s t e r i s buying

82 // e l s e the c l u s t e r s l e e p s

83 }

84 // the pr i c e re turn i s then g iven by the s ca l ed d i f f e r e n c e

55

85 pr iceReturn = (sumBuy−sumSel l)/ lambda ;

86 }

87

88

89 /∗∗

90 ∗ Get the pr i c e re turn computed with the Cont−Bouchaud model

91 ∗ @return the pr i c e re turn

92 ∗/

93 public double getPr iceReturn ()

94 {

95 return pr iceReturn ;

96 }

97

98 /∗∗

99 ∗ Set the p r o b a b i l i t y t ha t a c l u s t e r be a c t i v e (buys or s e l l s)

100 ∗ @param a : the p r o b a b i l i t y t ha t a s i t e i s a c t i v e (buys or s e l l s)

101 ∗/

102 private void setProb (double a)

103 {

104 this . a = a ;

105 }

106

107 /∗∗

108 ∗ Set the s c a l i n g f a c t o r de f ined in the Cont−Bouchaud model

109 ∗ @param lambda : the s c a l i n g f a c t o r

110 ∗/

111 private void setLambda (double lambda)

112 {

113 this . lambda = lambda ;

114 }

115

116 /∗∗

117 ∗ Get the p r o b a b i l i t y t ha t a c l u s t e r be a c t i v e (buys or s e l l s)

118 ∗ @return the p r o b a b i l i t y t ha t a c l u s t e r i s a c t i v e (buys or s e l l s)

119 ∗/

120 public double getClusterProb ()

121 {

122 return a ;

123 }

124

125 /∗∗

126 ∗ Get the s c a l i n g f a c t o r de f ined in the Cont−Bouchaud model

127 ∗ @return the s c a l i n g f a c t o r

56

128 ∗/

129 public double getLambda ()

130 {

131 return lambda ;

132 }

133 }

Listing 9: ContBouchaud.java

A.5 Model.java

1 /∗∗

2 ∗ Implement p a r t i c u l a r models from the Cont−Bouchaud s e t t i n g

3 ∗ @author Damien Dev i l l e

4 ∗

5 ∗/

6 public class Model

7 {

8 private int numSteps ; // the number o f time s t ep s

9 private double i n i t i a l P r i c e ; // the i n i t i a l a s s e t p r i c e

10

11 /∗∗

12 ∗ Constructor d e f i n i t i o

13 ∗ @param numSteps : the number o f time s t ep s in the model

14 ∗ @param i n i t i a l P r i c e : the i n i t i a l a s s e t p r i c e

15 ∗/

16 public Model (int numSteps , double i n i t i a l P r i c e)

17 {

18 setNumSteps (numSteps) ; // we s e t the number o f s t e p s

19 s e t I n i t i a l P r i c e (i n i t i a l P r i c e) ; // we s e t the i n i t i a l a s s e t p r i c e

20 }

21

22 /∗∗

23 ∗ Set the number o f time s t e p s

24 ∗ @param numSteps : the number o f time s t ep s

25 ∗/

26 public void setNumSteps (int numSteps)

27 {

28 this . numSteps = numSteps ;

29 }

30

31 /∗∗

57

32 ∗ Set the i n i t i a l a s s e t p r i c e

33 ∗ @param i n i t i a l P r i c e : the i n i t i a l a s s e t p r i c e

34 ∗/

35 public void s e t I n i t i a l P r i c e (double i n i t i a l P r i c e)

36 {

37 this . i n i t i a l P r i c e = i n i t i a l P r i c e ;

38 }

39

40 /∗∗

41 ∗ Generate re turns from the Cont−Bouchaud model assuming the

42 ∗ l a t t i c e does not change at each time s t ep (more e f f i c i e n t)

43 ∗ and tha t we a l ready have t h i s l a t t i c e (inputed in the method)

44 ∗ @param a : the a c t i v i t y p r o b a b i l i t y

45 ∗ @param lambda : the pr i c e s c a l i n g f a c t o r

46 ∗ @param c l u s t e r S i z e s : array conta in ing c l u s t e r s i z e s

47 ∗ @return array conta in ing re turns from the model

48 ∗/

49 public double [] c lass icConstantContBouchaud (double a , double lambda , In t eg e r [] c l u s t e r S i z e s)

50 {

51 double [] r e tu rn s = new double [numSteps] ; // we de f ine an array to contain the re turns

52 ContBouchaud pr iceReturn ; // ContBouchaud o b j e c t t ha t models one re turn from the model

53 for (int i = 0 ; i < numSteps ; i++) // we loop as many times as the number o f s t e p s

54 {

55 // ge t a pr i c e re turn from the Cont−Bouchaud model

56 pr iceReturn = new ContBouchaud (a , lambda , c l u s t e r S i z e s) ;

57 r e tu rn s [i] = pr iceReturn . getPr iceReturn () ;

58 }

59 return r e tu rn s ;

60 }

61

62 /∗∗

63 ∗ Generate re turns from the Cont−Bouchaud model assuming the

64 ∗ l a t t i c e does not change at each time s t ep (more e f f i c i e n t)

65 ∗ @param l a t t i c e S i z e : the s i z e o f the l a t t i c e

66 ∗ @param prob : the occupancy p r o b a b i l i t y

67 ∗ @param a : the a c t i v i t y p r o b a b i l i t y

68 ∗ @param lambda : the pr i c e s c a l i n g f a c t o r

69 ∗ @return array conta in ing re turns from the model

70 ∗/

71 public double [] c lass icConstantContBouchaud (int l a t t i c e S i z e , double prob , double a , . . .

72 . . . double lambda)

73 {

74 La t t i c e l a t = new Lat t i c e (l a t t i c e S i z e , prob) ; // de f ine a new l a t t i c e

58

75 C lu s t e r s c l u s t e r s = new Clus t e r s (l a t) ; // we check the c l u s t e r s in t h i s l a t t i c e

76 In t eg e r [] c l u s t e r S i z e s = c l u s t e r s . g e tC l u s t e r S i z e s () ; // we ge t the s i z e o f c l u s t e r s

77

78 double [] r e tu rn s = new double [numSteps] ; // we de f ine an array to contain the re turns

79 ContBouchaud pr iceReturn ; // ContBouchaud o b j e c t t ha t models one re turn from the model

80 for (int i = 0 ; i < numSteps ; i++) // we loop as many times as the number o f s t e p s

81 {

82 // ge t a pr i c e re turn from the Cont−Bouchaud model

83 pr iceReturn = new ContBouchaud (a , lambda , c l u s t e r S i z e s) ;

84 r e tu rn s [i] = pr iceReturn . getPr iceReturn () ;

85 }

86 return r e tu rn s ;

87 }

88

89 /∗∗

90 ∗ Generate re turns from the Cont−Bouchaud model assuming the

91 ∗ l a t t i c e changes at each time s t ep

92 ∗ @param l a t t i c e S i z e

93 ∗ @param prob

94 ∗ @param a

95 ∗ @param lambda

96 ∗ @return

97 ∗/

98 public double [] c lass icContBouchaud (int l a t t i c e S i z e , double prob , double a , double lambda)

99 {

100 double [] r e tu rn s = new double [numSteps] ; // we de f ine an array to contain the re turns

101 ContBouchaud pr iceReturn ; // ContBouchaud o b j e c t t ha t models one re turn from the model

102 for (int i = 0 ; i < numSteps ; i++) // we loop as many times as the number o f s t e p s

103 {

104 // ge t a pr i c e re turn from the Cont−Bouchaud model

105 pr iceReturn = new ContBouchaud (l a t t i c e S i z e , prob , a , lambda) ;

106 r e tu rn s [i] = pr iceReturn . getPr iceReturn () ;

107 }

108 return r e tu rn s ;

109 }

110

111 /∗∗

112 ∗ Generate the pr i c e time s e r i e s from an i n i t i a l p r i c e based on the re turns

113 ∗ @param i n i t i a l P r i c e : the i n i t i a l p r i c e

114 ∗ @return the pr i c e time s e r i e s

115 ∗/

116 public double [] generateTimeSer i e s (double [] p r i ceReturns)

117 {

59

118 double [] t imeSe r i e s = new double [numSteps] ; // we de f ine an array to contain p r i c e s

119 t imeSe r i e s [0] = i n i t i a l P r i c e ; // the f i r s t va lue i s the i n i t i a l p r i c e

120 for (int i = 0 ; i < numSteps−1 ; i++) // we loop as many times as the number o f s t e p s

121 t imeSe r i e s [i +1] = t imeSe r i e s [i] + pr i ceReturns [i] ; // generate p r i c e s

122 return t imeSe r i e s ;

123 }

124 }

Listing 10: Model.java

A.6 Functions.java

1 import java . u t i l . Enumeration ;

2 import java . u t i l . Hashtable ;

3

4 /∗∗

5 ∗ Defines func t i ons used in order to ge t some r e s u l t s

6 ∗ from the model

7 ∗ @author Damien Dev i l l e

8 ∗

9 ∗/

10 public class Functions

11 {

12

13 /∗∗

14 ∗ Constructor d e f i n i t i o n

15 ∗/

16 public Functions ()

17 {

18

19 }

20

21 /∗∗

22 ∗ Get the c l u s t e r s i z e d i s t r i b u t i o n fo r a g iven p r o b a b i l i t y p

23 ∗ pr in t out f requency o f each c l u s t e r s i z e in the l a t t i c e

24 ∗ @param p : the p r o b a b i l i t y p

25 ∗ @param l a t t i c e S i z e : the l a t t i c e s i z e

26 ∗ @param numExp : number o f experiments

27 ∗/

28 public void c l u s t e r S i z eD i s t r i b u t i o n (double p , int l a t t i c e S i z e , int numExp)

29 {

30 // HashTable t ha t w i l l contain the c l u s t e r s i z e as a key and

60

31 // the frequency as the corresponding va lue

32 Hashtable<Integer , Double> nums = new Hashtable<Integer , Double >() ;

33 // we loop as many times as number o f experiments

34 for (int n = 0 ; n < numExp ; n++)

35 {

36 La t t i c e l a t = new Lat t i c e (l a t t i c e S i z e , p) ; // crea t e new l a t t i c e

37 C lu s t e r s c l u s t e r s = new Clus t e r s (l a t) ; // crea t e new c l u s t e r s

38 In t eg e r [] s i z e s = c l u s t e r s . g e tC l u s t e r S i z e s () ; // ge t c l u s t e r s i z e s

39 // loop as many times as the s i z e s o f c l u s t e r s i z e s array

40 for (int i = 0 ; i < s i z e s . l ength ; i++)

41 {

42 // i f the c l u s t e r s i z e a l ready e x i s t s as a key in the ha sh t a b l e

43 i f (nums . containsKey (s i z e s [i]))

44 // we increment the va lue (f requency) by 1

45 nums . put (s i z e s [i] , nums . get (s i z e s [i])+1) ;

46 else // i f i t does not e x i s t

47 nums . put (s i z e s [i] , 1 . 0) ; // we crea t e a new hash t ab l e entry

48 }

49 }

50 // we then pr in t out the averaged frequency fo r each c l u s t e r s i z e

51 Enumeration<Integer> k = nums . keys () ;

52 while (k . hasMoreElements ())

53 {

54 int key = (int) k . nextElement () ;

55 double value = (double)nums . get (key) ;

56 System . out . p r i n t l n (key + ” ” + value /(double)numExp) ;

57 }

58 }

59

60

61 /∗∗

62 ∗ Compute re turns from the Cont−Bouchaud model g iven a p r o b a b i l i t y a and

63 ∗ summing over a l l c l u s t e r s s i z e s f o r a l l p r o b a b i l i t i e s p (s t ep 0 .01)

64 ∗ between 0.01 and 0 .59 . Write down the re turns in a t e x t f i l e

65 ∗ @param a : the p r o b a b i l i t y a

66 ∗ @param l a t t i c e S i z e : the l a t t i c e s i z e

67 ∗ @param numSteps : number o f time s t e p s

68 ∗ @param numExp : number o f experiments

69 ∗/

70 public void returnsCBsumProb (double a , int l a t t i c e S i z e , int numSteps , int numExp)

71 {

72 St r ing s = ”output” ;

73 St r ing ext = ” . txt ” ;

61

74 for (int j = 1 ; j <= numExp ; j++) // loop as many times as number o f experiments

75 {

76 St r ing output = s + j + ext ; // crea t e t x t f i l e name

77 System . out . p r i n t l n (output) ;

78 In t eg e r [] o r i g i n a lC l u s t e r S i z e s = new I n t eg e r [0] ;

79 for (int n = 1 ; n <= 59 ; n++) // loop through a l l p r o b a b i l i t i e s p

80 {

81 double proba = (double)n/100 ; // de f ine the p r o b a b i l i t y p

82 La t t i c e l a t = new Lat t i c e (l a t t i c e S i z e , proba) ; // crea t e a new l a t t i c e

83 C lu s t e r s c l u s t e r s = new Clus t e r s (l a t) ; // new c l u s t e r s

84 In t eg e r [] c l u s t e r S i z e s = c l u s t e r s . g e tC l u s t e r S i z e s () ; // ge t a l l c l u s t e r s i z e s

85 // crea t e a new array conta in ing prev ious and new c l u s t e r s i z e s

86 In t eg e r [] newCluste rS i ze s = new I n t eg e r [o r i g i n a lC l u s t e r S i z e s . l ength + . . .

87 . . . c l u s t e r S i z e s . l ength] ;

88 // we add to i t a l l p rev ious c l u s t e r s s i z e s

89 for (int i = 0 ; i < o r i g i n a lC l u s t e r S i z e s . l ength ; i++)

90 newCluste rS i ze s [i] = o r i g i n a lC l u s t e r S i z e s [i] ;

91 // we add to i t a l l new c l u s t e r s s i z e s

92 for (int i = 0 ; i < c l u s t e r S i z e s . l ength ; i++)

93 newCluste rS i ze s [i+o r i g i n a lC l u s t e r S i z e s . l ength] = c l u s t e r S i z e s [i] ;

94 o r i g i n a lC l u s t e r S i z e s = newCluste rS i ze s ;

95 }

96 // g iven the new l i s t o f c l u s t e r s i z e s , we ge t the re turns from the model

97 Model model = new Model (numSteps , 1) ;

98 double [] p r i ceReturns=model . c lass icConstantContBouchaud (a , 1 , o r i g i n a lC l u s t e r S i z e s) ;

99 FileOutput out = new FileOutput (output) ; // crea t e t x t f i l e

100 // fo r each time step , we wr i t e the r e s u l t as a new l i n e in the t x t f i l e

101 for (int i = 0 ; i < pr i ceReturns . l ength ; i++)

102 {

103 out . writeDouble (pr i ceReturns [i]) ;

104 out . wr i teNewl ine () ;

105 }

106 out . c l o s e () ; // c l o s e the t e x t f i l e

107 }

108 }

109

110

111 /∗∗

112 ∗ Compute re turns from the Cont−Bouchaud model g iven a p r o b a b i l i t y a and

113 ∗ a p r o b a b i l i t y p . Write down the re turns in a t e x t f i l e

114 ∗ @param p : the p r o b a b i l i t y p

115 ∗ @param a : the p r o b a b i l i t y a

116 ∗ @param l a t t i c e S i z e : the l a t t i c e s i z e

62

117 ∗ @param numSteps : the number o f time s t ep s

118 ∗ @param numExp : the number o f experiments we average out

119 ∗/

120 public void returnsCBoneProb (double p , double a , int l a t t i c e S i z e , int numSteps , int numExp)

121 {

122 St r ing s = ”output” ;

123 St r ing ext = ” . txt ” ;

124 for (int n = 1 ; n <= numExp ; n++) // loop as many times as number o f experiments

125 {

126 St r ing output = s + n + ext ; // crea t e t x t f i l e name

127 System . out . p r i n t l n (output) ;

128 FileOutput out = new FileOutput (output) ; // crea t e t x t f i l e

129 Model model = new Model (numSteps , 1) ; // crea t e a new model o b j e c t

130 // we ge t the re turns from the Cont−Bouchaud model

131 double [] p r i ceReturns = model . c lass icConstantContBouchaud (l a t t i c e S i z e , p , a , 1) ;

132 // fo r each time step , we wr i t e the r e s u l t as a new l i n e in the t x t f i l e

133 for (int i = 0 ; i < numSteps ; i++)

134 {

135 out . writeDouble (pr i ceReturns [i]) ;

136 out . wr i teNewl ine () ;

137 }

138 out . c l o s e () ; // c l o s e the t e x t f i l e

139 }

140 }

141

142 /∗∗

143 ∗ Compute p r i c e s from the Cont−Bouchaud model g iven a p r o b a b i l i t y a and

144 ∗ a p r o b a b i l i t y p . Write down the re turns in a t e x t f i l e

145 ∗ @param p : the p r o b a b i l i t y p

146 ∗ @param a : the p r o b a b i l i t y a

147 ∗ @param l a t t i c e S i z e : l a t t i c e s i z e

148 ∗ @param numSteps : number o f time s t e p s

149 ∗ @param numExp : number o f experiments

150 ∗ @param i n i t i a l P r i c e : the i n i t i a l a s s e t p r i c e

151 ∗ @param lambda : the pr i c e s c a l i n g f a c t o r

152 ∗/

153 public void timeSeriesCBoneProb (double p , double a , int l a t t i c e S i z e , int numSteps , . . .

154 . . . int numExp , double i n i t i a l P r i c e , double lambda)

155 {

156 St r ing s = ”output” ;

157 St r ing ext = ” . txt ” ;

158 for (int n = 1 ; n <= numExp ; n++) // loop as many times as number o f experiments

159 {

63

160 St r ing output = s + n + ext ; // crea t e t x t f i l e name

161 System . out . p r i n t l n (output) ;

162 FileOutput out = new FileOutput (output) ; // crea t e t x t f i l e

163 Model model = new Model (numSteps , i n i t i a l P r i c e) ; // crea t e a new model o b j e c t

164 // we ge t the re turns from the Cont−Bouchaud model

165 double [] p r i ceReturns = model . c lass icConstantContBouchaud (l a t t i c e S i z e , p , a , lambda) ;

166 // we generate a time−s e r i e s from the re turns

167 double [] t imeSe r i e s = model . generateTimeSer i e s (pr i ceReturns) ;

168 // fo r each time step , we wr i t e the r e s u l t as a new l i n e in the t x t f i l e

169 for (int i = 0 ; i < numSteps ; i++)

170 {

171 out . writeDouble (t imeSe r i e s [i]) ;

172 out . wr i teNewl ine () ;

173 }

174 out . c l o s e () ; // c l o s e the t e x t f i l e

175 }

176 }

177

178

179 /∗∗

180 ∗ Find the c r i t i c a l p r o b a b i l i t y check ing i f p e r co l a t i on occurs in each l a t t i c e

181 ∗ f o r each p . Average the r e s u l t s out o f a number o f t r i a l s

182 ∗ @param l a t t i c e S i z e : the l a t t i c e s i z e

183 ∗ @param t r i a l s : number o f t r i a l s

184 ∗/

185 public void f i ndCr i t i cProb (int l a t t i c e S i z e , int t r i a l s)

186 {

187 La t t i c e l a t ; // de f ine new l a t t i c e

188 double p ; // p r o b a b i l i t y p

189 int probMesh = 100 ; // the p r o b a b i l i t y mesh s i z e

190 // long seed = 12318991921L ;

191 int [] r e s u l t s = new int [probMesh] ; // array conta in ing r e s u l t s

192 int count ;

193 for (int i = 1 ; i <= probMesh ; i++)

194 {

195 p = (double) i /probMesh ; // de f i n e s the p r o b a b i l i t y p

196 count = 0 ;

197 // loop as many times as t r i a l s number

198 for (int j = 0 ; j < t r i a l s ; j++)

199 {

200 System . out . p r i n t l n (” Tr i a l number : ” + j) ;

201 l a t = new Lat t i c e (l a t t i c e S i z e , p) ; // crea t e a new l a t t i c e

202 C lu s t e r s c l u s t e r s = new Clus t e r s (l a t) ; // ge t the c l u s t e r s

64

203 i f (c l u s t e r s . checkPerco la t i on ()) // check i f p e r co l a t i on occurs

204 count++ ; // i f p e r co l a t i on occurs , increase count by 1

205 }

206 r e s u l t s [i −1] = count ;

207 System . out . p r i n t l n (p + ” ” + r e s u l t s [i −1]) ;

208 }

209 }

210

211

212 /∗∗

213 ∗ Print the average c l u s t e r number f o r each p r o b a b i l i t y p

214 ∗ @param l a t t i c e S i z e : the l a t t i c e s i z e

215 ∗ @param numExp : number o f experiments to average out

216 ∗/

217 public void averageClusterNum (int l a t t i c e S i z e , int numExp)

218 {

219 for (double i = 1 ; i <= 100 ; i++)

220 {

221 double prob = i / 100 ; // p r o b a b i l i t y p

222 int sum = 0 ;

223 for (int j = 0 ; j < numExp ; j++)

224 {

225 // long seed = 123189914592L ;

226 La t t i c e l a t = new Lat t i c e (l a t t i c e S i z e , prob) ;

227 C lu s t e r s c l u s t e r s = new Clus t e r s (l a t) ;

228 sum += c l u s t e r s . getClusterNumber () ;

229 }

230 System . out . p r i n t l n (prob + ” ” + (double)sum/numExp) ;

231 }

232 }

233 }

Listing 11: Functions.java

65

References

[1] Andersen, T., Benzoni, L., and Lund, J. An empirical investigation of continuous-

time equity return models. Journal of Finance, 57 (2002), 1239.1284.

[2] Bachelier, L. Théorie de la spéculation. Annales de l’Ecole Normale Supérieure, 17

(1900), 21–86.

[3] Billingsley, P. Probability and Measure, 3rd edition ed. John Wiley sons, 1995.

[4] Black, F., and Scholes, M. The pricing of options and corporate liabilities. Journal

of Political Economics, 81 (1973), 637–659.

[5] Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. Journal of

Econometrics, 31 (1986), 307–327.

[6] Castiglione, F., and Stauffer, D. Multi-scaling in the cont–bouchaud microscopic

stock market model. Physica A: Statistical Mechanics and its Applications (Jan 2001).

[7] Chakraborti, A. Market application of the percolation model: Relative price distri-

bution. International Journal of Modern Physics C 13, 1 (2002), 25–30.

[8] Chang, I., Stauffer, D., and Pandey, R. B. Asymmetries, correlations and fat

tails in percolation market model. Arxiv preprint cond-mat/0108345 (2001).

[9] Cont, R. Empirical properties of asset returns: stylized facts and statistical issues.

Quantitative Finance (Jan 2001).

[10] Cont, R., and Bouchaud, J.-P. Herd behavior and aggregate fluctuations in finan-

cial markets. Macroeconomic dynamics 4, 02 (2000), 170–196.

[11] Derman, E. My Life as a Quant. John Wiley & Sons - New York, 2004.

[12] Ederington, L., and Guan, W. Why are those options smiling?

66

[13] Geman, H. Pure jump levy processes for asset price modelling. Journal of Banking

and Finance (2002).

[14] G.E.Uhlenbeck, and L.S.Ornstein. On the theory of brownian motion. Phys.Rev.,

36 (1930), 823841.

[15] Heston, S. L. A closed-form solution for options with stochastic volatility with ap-

plications to bond and currency options. The Review of Financial Studies, Volume 6,

number 2 (1993), 327–343.

[16] Hoshen, J., and Kopelman, R. Percolation and cluster distribution. i. cluster mul-

tiple labeling technique and critical concentration algorithm. Physical Review B 14, 8

(1976), 3438–3445.

[17] Hoshen, J., Kopelman, R., and Monberg, E. Percolation and cluster distribution.

ii. layers, variable-range interactions, and exciton cluster model. Journal of Statistical

Physics 19, 3 (1978), 219–242.

[18] Hull, J. C. Options, Futures and Other Derivatives, 7th edition ed. Prentice Hall,

2008.

[19] Klymko, P., Hoshen, J., and Kopelman, R. Percolation and cluster distribution.

iii. algorithms for the site-bond problem. Journal of Statistical Physics 21, 5 (1979),

583–600.

[20] Leath, P. L. Cluster size and boundary distribution near percolation threshold. Phys.

Rev. B 14, 11 (Dec 1976), 5046–5055.

[21] Madan, D., and Seneta, E. The variance gamma (v.g.) model for share market

returns. Journal of Business, 63 (1990), 511–524.

[22] Samanidou, E., Zschischang, E., Stauffer, D., and Lux, T. Agent-based

models of financial markets. Reports on Progress in Physics (Jan 2007).

67

[23] Samuelson, P. Rational theory of warrant pricing. Indutrial Management Review, 6

(1965), 13–31.

[24] Stauffer, D. Percolation models of financial market dynamics. Advances in Complex

Systems 4, 1 (2001), 19.

[25] Stauffer, D., and Aharony, A. Introduction to percolation theory, 2nd edition ed.

Taylor Francis, Ltd, 1991.

[26] Stauffer, D., and Jan, N. Sharp peaks in the percolation model for stock markets.

Physica A: Statistical Mechanics and its Applications (Jan 2000).

[27] Stauffer, D., and Sornette, D. Self-organized percolation model for stock market

fluctuations. Arxiv preprint cond-mat (Jan 1999).

[28] Tanaka, H. A percolation model of stock price fluctuations. 1264 (2002), 203–218.

[29] Tsang, I., and Tsang, I. Critical probabilities for diversity and number of clusters

in randomly occupied square Journal of Physics A-Mathematical and General (Jan

1997).

[30] Wang, J., Yang, C.-X., Zhou, P.-L., Jin, Y.-D., Zhou, T., and Wang, B.

Evolutionary percolation model of stock market with variable agent number. Physica

A: Statistical Mechanics and its Applications 354 (2005), 505–517.

68

